Reducing Neural Architecture Search Spaces with Training-Free Statistics and Computational Graph Clustering

Abstract

The computational demands of neural architecture search (NAS) algorithms are usually directly proportional to the size of their target search spaces. Thus, limiting the search to high-quality subsets can greatly reduce the computational load of NAS algorithms. In this paper, we present Clustering-Based REDuction (C-BRED), a new technique to reduce the size of NAS search spaces. C-BRED reduces a NAS space by clustering the computational graphs associated with its architectures and selecting the most promising cluster using proxy statistics correlated with network accuracy. When considering the NAS-Bench-201 (NB201) data set and the CIFAR-100 task, C-BRED selects a subset with 70% average accuracy instead of the whole space’s 64% average accuracy.

Publication
19th ACM International Conference on Computing Frontiers
Thorir Mar Ingolfsson
Thorir Mar Ingolfsson
Postdoctoral Researcher

I develop efficient machine learning systems for biomedical wearables that operate under extreme resource constraints. My work bridges foundation models, neural architecture design, and edge deployment to enable real-time biosignal analysis on microwatt-scale devices.