Thorir Mar Ingolfsson
Home
Research
Publications
Projects
Opportunities
Blog
Contact
Light
Dark
Automatic
foundation model
LUNA: Efficient and Topology-Agnostic Foundation Model for EEG Signal Analysis
Topology-agnostic EEG foundation model that delivers state-of-the-art performance with 300× fewer FLOPs and 10× lower memory usage.
Berkay Döner
,
Thorir Mar Ingolfsson
,
Luca Benini
,
Yawei Li
PDF
Code
Project
Preprint (arXiv)
GitHub Repository
DOI
FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model
Bidirectional Mamba EEG foundation model that matches transformer accuracy while scaling linearly with sequence length.
Anna Tegon
,
Thorir Mar Ingolfsson
,
Xiaying Wang
,
Luca Benini
,
Yawei Li
PDF
Code
Project
Preprint (arXiv)
GitHub Repository
DOI
CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention
Alternating-attention EEG foundation model pre-trained on 20k+ hours that doubles speed and cuts memory by 6× versus standard transformers.
Alexandru Dimofte
,
Glenn Anta Bucagu
,
Thorir Mar Ingolfsson
,
Xiaying Wang
,
Andrea Cossettini
,
Luca Benini
,
Yawei Li
PDF
Project
Preprint (arXiv)
DOI
BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring
BERT-inspired EEG encoder that cuts seizure-detection false positives to 0.23 FP/h after subject-specific tuning.
Luca Benfenati
,
Thorir Mar Ingolfsson
,
Andrea Cossettini
,
Daniele Jahier Pagliari
,
Alessio Burrello
,
Luca Benini
PDF
Dataset
Project
Preprint (arXiv)
TUH EEG Corpus
Cite
×