Thorir Mar Ingolfsson
Home
Research
Publications
Projects
Opportunities
Blog
Contact
Light
Dark
Automatic
self-supervised learning
LUNA: Efficient and Topology-Agnostic Foundation Model for EEG Signal Analysis
Topology-agnostic EEG foundation model that delivers state-of-the-art performance with 300× fewer FLOPs and 10× lower memory usage.
Berkay Döner
,
Thorir Mar Ingolfsson
,
Luca Benini
,
Yawei Li
PDF
Code
Project
Preprint (arXiv)
GitHub Repository
DOI
FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model
Bidirectional Mamba EEG foundation model that matches transformer accuracy while scaling linearly with sequence length.
Anna Tegon
,
Thorir Mar Ingolfsson
,
Xiaying Wang
,
Luca Benini
,
Yawei Li
PDF
Code
Project
Preprint (arXiv)
GitHub Repository
DOI
CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention
Alternating-attention EEG foundation model pre-trained on 20k+ hours that doubles speed and cuts memory by 6× versus standard transformers.
Alexandru Dimofte
,
Glenn Anta Bucagu
,
Thorir Mar Ingolfsson
,
Xiaying Wang
,
Andrea Cossettini
,
Luca Benini
,
Yawei Li
PDF
Project
Preprint (arXiv)
DOI
Cite
×