
HARDWARE-AWARE NEURAL NETWORK ANALYSIS

Mark Vero1, Thorir Mar Ingolfsson1, Xiaying Wang1

Lorenzo Lamberti,2 Matteo Spallanzani1, Luca Benini1,2

1ETH Zürich, 2Università di Bologna

HARDWARE-AWARE NEURAL NETWORK ANALYSIS

Mark Vero1, Thorir Mar Ingolfsson1, Xiaying Wang1

Lorenzo Lamberti,2 Matteo Spallanzani1, Luca Benini1,2

1ETH Zürich, 2Università di Bologna

Why HW-constrained NAS?

Neural Architecture Search (NAS) aims at discovering Deep Neural Network
(DNN) topologies that have good task accuracy. NAS algorithms are often time-
consuming and computationally expensive. Moreover, they usually ignore the lim-
itations of embedded or edge computing devices. To design better HW for DNNs
and better DNNs for constrained HW, we must understand the recurring features of
task-accurate architectures. This work investigates how to efficiently explore NAS
spaces looking for task-accurate HW-constrained DNNs and how to design better
search spaces for HW-constrained DNNs.
We model the DNN architecture as a latent variable λ ∈ Λ. This variable manifests
itself through several observable properties, mainly 1) the functional form fλ and
2) the program form Gλ.

Training-Free Statistics

In its functional form, a DNN is a function
fλ : Θλ ×X → Y

(θλ, x) 7→ fλ(θλ, x)

that is parametric in θλ ∈ Θλ. The parameter evolves from a randomly chosen initial
condition θ(0)

λ ∼ µ
θ
(0)
λ

over a stochastic trajectory {θ(0)
λ , . . . , θ

(T)
λ }, where T ∈ N is the

number of iterations of the training algorithm.
Given a DNN fλ, we define a statistic to be a measurable function

s : Θλ × (X × Y)→ S

(θλ, (x, y)) 7→ s(fλ(θλ, ·), (x, y)) .

Note that we can measure the statistic for an untrained (t = 0), partially trained
(0 < t < T), or completely trained (t = T) network parameter θ(t)

λ . Note also that
the value of the statistic is stochastic in the point θ(t)

λ of the parameter trajectory
and in the test point (x, y). We can describe the latent architecture variable λ ∈ Λ
through the statistic s after t training iterations by computing

sλ := E θλ∼µ
θ
(t)
λ

(x,y)∼µ(x,y)

[s(fλ(θλ, ·), (x, y))] ≈ 1

N

N∑
n=1

s(fλ(θ
(t)
λ (ω(n)), ·), (x(ω(n)), y(ω(n)))) .

The most important statistic is task accuracy:

a(fλ(θ
(T)
λ , ·), (x, y)) :=

{
1, if fλ(θ

(T)
λ , x) = y ,

0, if fλ(θ
(T)
λ , x) 6= y .

Task accuracy requires one to run the training algorithm to completion before it
can be measured. Training-free (TF) statistics are statistics whose distributions,
when computed with respect to the distribution µ

θ
(0)
λ

, correlate well with the distri-
bution of task accuracy. TF statistics provide a much cheaper estimate for the task
accuracy of a candidate DNN, since they avoid the need to train it.
NAS literature on TF statistics has so far proposed four promising candidates:
• the condition number of the Neural Tangent Kernel (NTK);
• the number of regions cut in the input domain X by a ReLU-activated network;
• NAS w/o Training Score (version 1 and version 2).

Clustering Computational Graphs

In its program form, a DNN is a bipartite graph

G = (VM ∪ VK, ER ∪ EW)

called a computational graph (CG), where VM is a set of memory nodes (e.g.,
parameters or feature arrays), VK is a set of kernel nodes (e.g., convolutions or
activation operations), ER ⊂ VM×VK is a set of read operations, and EW ⊂ VK×VM
is a set of write operations. We can derive a CG composed only of operations by
projecting it onto the kernel partition.
We represent a computational graph Gλ using a third-order adjacency tensor

Aλ ∈ {0, 1}|Vλ|×|Vλ|×|K| ,
where Vλ is the set of operations building up Gλ, K is the collection of operation
types, and | · | denotes set cardinality. We compare two graphs Gλ1, Gλ2 by using
two classes of distances:
• probabilistic differences comparing the distributions of operations usage (sym-
metricised Kullback-Leibler, Jensen-Shannon, Hellinger);

• a transformation distance capturing the cost of transforming one graph into an-
other; the cost model is defined heuristically.

Clustering algorithms (k-means, spectral clustering) create groups of objects that
are similar under the chosen distance.

NAS-Bench-101

NAS-Bench-101 has been the first data set of DNN architectures developed to
foster NAS research. It contains over 400, 000 unique architectures to solve the
CIFAR-10 data set, each of which is annotated with its task accuracy.

conv stem

stack 1

stack 2

stack 3

downsample

downsample

global avg pool

dense

cell
2-3

cell
2-2

cell
2-1

NAS-Bench data sets utilise cell-based
parametrisations to describe different archi-
tectures. As shown in the picture to the left,
NAS-Bench networks are built concatenating
several cells; the operations that compose a
cell can be chosen and configured indepen-
dently from those of other cells.

As a first step, we ran a replication ex-
periment with TF statistics. As shown
by the right-most column in the barplot,
the task accuracy distribution of the
DNN population associated with the
best TF statistics quantile is better
than the task accuracy distribution
for the whole population.

If we constrain the analysis to those networks which can be fit on devices with
constrained storage (first and second columns), the predictive power of TF
statistics is still preserved.

NAS-Bench-201

The NAS-Bench-201 contains 56 = 15, 625 DNNs, each of which is annotated with
its task accuracy over three different image classification data sets (CIFAR-10,
CIFAR-100, ImageNet16-120).

The predictive power of TF statis-
tics seems independent of HW con-
straints even on NAS-Bench-201, as
shown by the Kendall’s tau coefficients
correlating the TF statistics rankings to
the task accuracy ranking.

We cluster the CGs of NAS-Bench-201 architectures to
find groups of mutually similar programs. This sim-
ilarity between programs also impacts the intra-cluster
distributions of TF statistics: indeed, different clusters
exhibit different distributions of TF statistics.

We can exploit this observation to
derive an unsupervised algorithm
to select those program clusters
which have the best distributions
of TF statistics. Even a trivial search
algorithm such as sampling networks
at random from the best cluster can
find task-accurate networks.

Looking at the distributions of the operations used by the programs in the best
clusters, we see 1) that good programs do not use disruptive operations (e.g.,
pooling) and 2) that more compact programs mix 3× 3 and 1× 1 convolutions
instead of using only 3× 3 convolutions.

Email: thoriri@iis.ee.ethz.ch

