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Why reducing NAS spaces?

Neural Architecture Search (NAS) aims at discovering Deep Neural Network
(DNN) topologies that have good task accuracy. NAS algorithms are often time-
consuming and computationally expensive; thus, being able to focus the search
on those sub-spaces containing good candidates can greatly improve the perfor-
mance of NAS algorithms. This work investigates how to efficiently identify high-
performing subspaces of a given NAS space.
We model the DNN architecture as a latent variable λ ∈ Λ. This variable manifests
itself through several observable properties, mainly 1) the functional form fλ and
2) the program form Gλ.
We validate our ideas on the NAS-Bench-201 (NB201) dataset. NAS-Bench net-
works are built by concatenating six identical cells, which can be configured in 56

different ways. NB201 contains 56 = 15, 625 DNNs, each of which is annotated
with its task accuracy over three different image classification data sets (CIFAR-
10, CIFAR-100, ImageNet16-120).
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Training-Free Statistics

In its functional form, a DNN is a function

fλ : Θλ ×X → Y

that is parametric in θλ ∈ Θλ. The parameter evolves from a randomly chosen initial
condition θ

(0)
λ ∼ µ

θ
(0)
λ

over a stochastic trajectory {θ(0)λ , . . . , θ
(T )
λ }, where T ∈ N is the

number of iterations of the training algorithm.
Let Dn := (X ×Y )n be the collection of all n-samples taken from X ×Y . We define
D0 to be the empty tuple, D+ := ∪+∞n=1Dn to be the collection of non-empty samples,
and D∗ := D0 ∪D+ to be the collection of (possibly empty) samples.
Given a DNN fλ, we define a statistic to be a measurable function

sλ : Θλ ×D∗→ S ,

where S is some set of measurements. Note that we can measure the statistic for
an untrained (t = 0), partially trained (0 < t < T ), or completely trained (t = T )
network parameter θ(t)λ . Note also that the value of the statistic is stochastic in the
point θ(t)λ of the parameter trajectory and in the sample D ∈ D∗.
We can describe the latent architecture variable λ ∈ Λ through the statistic sλ after
t training iterations by computing

Eθλ∼µ
θ
(t)
λ

D∼µD∗

[sλ(θλ,D)] ≈
1

N

N∑
n=1

sλ(θ
(t,n)
λ ,D(n)) .

The most important statistic is task accuracy. The problem with task accuracy is
that it must be computed with respect to µ

θ
(T )
λ

, i.e., it requires one to run the training
algorithm to completion before it can be measured. Training-free (TF) statistics
are statistics whose distributions, when computed with respect to the distribution
µ
θ
(0)
λ

, correlates well with the distribution of task accuracy. TF statistics provide a
much cheaper estimate for the task accuracy of a candidate DNN, since they avoid
the need to train it.
NAS literature on TF statistics has so far proposed four candidate statistics:
• the condition number of the Neural Tangent Kernel (NTK);
• the number of regions cut in the input domain X by a ReLU-activated network;
• NAS w/o Training Score (version 1 and version 2).
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Correlation between task accuracy
and TF statistics hits sharp decline
with progress towards high performing
networks. TF statistics are therefore of
limited use for pointwise information,
but work great at relational informa-
tion.

Clustering Computational Graphs

In its program form, a DNN is a bipartite graph

Gλ = (VM,λ, VK,λ, ER,λ ∪ EW,λ)

called a computational graph (CG), where VM,λ is a set of memory nodes (e.g.,
parameters or feature arrays), VK,λ is a set of kernel nodes (e.g., convolutions
or activation operations), ER,λ ⊂ VM,λ × VK,λ is a set of read operations, and
EW,λ ⊂ VK,λ × VM,λ is a set of write operations. We can derive a CG composed
only of arrays or operations by projecting it onto the memory or kernel partition,
respectively.
We represent a computational graph Gλ using a third-order adjacency tensor

Aλ ∈ {0, 1}|Vλ|×|Vλ|×|P | ,

where Vλ is the set of arrays building up Gλ, P is the collection of operation types,
and | · | denotes set cardinality. We compare two graphs Gλ1

, Gλ2
by using two

classes of distances:
• probabilistic differences comparing the distributions of operations usage (sym-
metricised Kullback-Leibler, Jensen-Shannon, Hellinger);

• a transformation distance capturing the cost of transforming one graph into an-
other; the cost model is defined heuristically.

Clustering algorithms (k-means, spectral clustering) create groups of objects
that are similar under the chosen distance.

Algorithm 1 Clustering-Based REDuction (C-
BRED)
Input: Architecture Search Space Λ, Distance

Measure d, Clustering Algorithm AC, Cluster
Scoring Function f

Output: High-Quality Subspace Λ∗ ⊆ Λ
1: K, η ← select_best_parameter(AC, GΛ, d)
2: {Λ1, . . . ,ΛK} ← AC(GΛ, d,K, η)
3: for i = 1 to K do
4: fi← f (Λi)
5: if (fi ≥ best_score) then
6: best_score← fi
7: best_cluster← Λi
8: end if
9: end for

10: return Λ∗← best_cluster

The similarity between programs also
impacts the intra-cluster distributions
of TF statistics: indeed, different
clusters exhibit different distribu-
tions of TF statistics.

Experiments and Insights

We can exploit the observation
of intra-cluster distributions of TF
statistics to derive an unsuper-
vised algorithm to select those
program clusters which have the
best distributions of TF statis-
tics.
Even a trivial search algorithm
such as sampling networks at ran-
dom from the best cluster can find
task-accurate networks.
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Looking at the distributions of the operations used by the programs in the best
clusters, we see 1) that good programs do not use disruptive operations (e.g.,
pooling) and 2) that more compact programs mix 3× 3 and 1× 1 convolutions
instead of using only 3 × 3 convolutions. This can be seen from the figure
below, but clusters 5 and 8 vastly outperform cluster 7.
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Cluster 7
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