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Motivation

Bridging Foundation Models and Wearable Constraints
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What we need We bridge this gap with 4 SoA
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* FMs that are SoA yet compact
* End-to-End deployment pipeline
* Hardware-aware optimization
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Biosignal Foundation Models

Model Architectures
FEMBA (EEG) | LUNA (EEG) | TinyMyo (EMG) | CEReBrO (EEG/ECG/PPG)
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594.8M MACs
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416.9M MACs
7.9 MB (8bit)

% FEMBA
SOA EEG

Abnormal EEG Detection
0.949 AUROC on TUAR

SOA EEG

Artifact & Abnormality Detection
81.6% on TUAB
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End-to-End Foundation Model

Deployment Pipeline

PyTorch — Quantization — Code Generation — GAP9 Execution

GTRAINING

PyTorch
FP32 Model
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INT8 Weights Scales
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Code Gen

C Runtime
» SIMD + DMA

C + NE16
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~1-2 cycles

9 cores +
Neural accelerator
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1.5 MB
~10 cycles
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8+ MB
~100s cycles
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9x RISC-V @ 370 MHz

A KEY CONSTRAINT: FM weights (2.3-9.4 MB) > L2 (1.5 MB)

Performance Analysis
Quantization-Accuracy Trade-off (CEReBrO)
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All code & models
open-source!

— Real-time (1 sec)

CEReBro

Alternating
Transformer

FEMBA

Bidirectional
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LUNA

RoPE + FFT
+ Channel Unification

TinyMyo
Vision
Transformer

First Real-Time Deployment of State-of-the-Art Biosignal Foundation Models

on Ultra-low-power Edge Device
CEReBrO: 146ms, 8mJ « FEMBA: up to 2bit quantizeds TinyMyo: ~36mW always-on « LUNA Channel unification

Quantization Results

Ox

smaller models
<2% accuracy drop on TUAB/CHB-MIT,

Efficient computation
>10 MACs/cycle

Boosted with
Neural Accelerator

Energy efficient

~8mdJ per inference

BioGap integration would allow
for 2 days of Battery-Life

— Hierarchical L3 — L2 — L1 streaming + double-buffered DMA

Quantization: FP32 — INT8

Ox smaller model, minimal accuracy loss

__Dataset [FP32 (9MB)INT8 (1MB), A

TUAB 0.898 0.890 -0.9%
CHB-MIT 0.877 0.863 -1.6%
SEED-VIG 0.933 0.930 -0.3%

Computational Efficiency
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FEMBA LUNA TinyMyo CEReBrO
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