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Motivation
Bridging Foundation Models and Wearable Constraints

End-to-End Foundation Model 
Deployment Pipeline

Performance Analysis

First Real-Time Deployment of State-of-the-Art Biosignal Foundation Models 
on Ultra-low-power Edge Device

CEReBrO: 146ms, 8mJ  •  FEMBA: up to 2bit quantized•  TinyMyo: ~36mW always-on • LUNA Channel unification

PyTorch → Quantization → Code Generation → GAP9 Execution
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9× RISC-V @ 370 MHz

NE16
Neural
Engine

370 MHz

L1
128 KB

~1-2 cycles

L2
1.5 MB

~10 cycles

L3 HyperRAM
8+ MB

~100s cycles

⚠ KEY CONSTRAINT: FM weights (2.3–9.4 MB) > L2 (1.5 MB)
→ Hierarchical L3 → L2 → L1 streaming + double-buffered DMA
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Compute vs Execution Cost
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Sequential SSM
limits parallelism

NE16 attention
boosts throughput

Computational Efficiency
Target (4 MACs/cyc)
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Fastest!

Inference Latency @ 370 MHz
Real-time (1 sec)
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Key Issues

Rapid Growth in Wearable 
Health Monitoring

Typical Smartphone Limit

Increasingly Powerful 
& Large AI Models

Data Privacy & Security
Mistral-7BPhi-3.5-mini

Qwen2.5-3B
Llama-3.2-1B

Efficient Foundation Models on 
Edge Devices (Edge LLMs)
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Need for Edge AI: For 
Privacy & Robust On-
Device Data Processing

Need for Edge AI: To 
Enable Efficient, 
Scalable Models on 
Device

Variable Quality of Sensor Data

Integrating & Interpreting 
Heterogeneous Sensor Data

Resource Demands of Large AI 
Models (Compute, Energy, Memory)
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Key Issues

FEMBA
SOA EEG

Abnormal EEG Detection
0.949 AUROC on TUAR

★ ★ LUNA
SOA EEG

Artifact & Abnormality Detection
81.6% on TUAB

TinyMyo
FIRST EMG FM
Gesture & Speech Recognition

97.6% UCI-EMG, 89.4% DB5

★ CEReBrO
SOA EEG

Seizure & Emotion Classification
68.2% on SEED-V

★

What we need
• FMs that are SoA yet compact
• End-to-End deployment pipeline
• Hardware-aware optimization

We bridge this gap with 4 SoA 
Biosignal Foundation Models

CEReBrO
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1.5 MB
0.896 6× compression

<0.3% acc. loss

Quantization-Accuracy Trade-off (CEReBrO)

FP32 Baseline (0.898)
Mixed-Precision Quantization

Quantization Results
9×

smaller models
<2% accuracy drop on TUAB/CHB-MIT

Dataset FP32 (9MB) INT8 (1MB) Δ
TUAB 0.898 0.890 -0.9%

CHB-MIT 0.877 0.863 -1.6%
SEED-VIG 0.933 0.930 -0.3%

Quantization: FP32 → INT8
9× smaller model, minimal accuracy loss
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L2 SRAM: 1.5 MB

7.6 MB 7.9 MB

3.6 MB

2.3 MB

All exceed L2 → need weight streaming

Model Weights vs GAP9 L2

Model Architectures
FEMBA (EEG) | LUNA (EEG) | TinyMyo (EMG) | CEReBrO (EEG/ECG/PPG)

Efficient computation
>10 MACs/cycle

Boosted with 
Neural Accelerator

All code & models 
open-source!

Energy efficient
~8mJ per inference

BioGap integration would allow
for 2 days of Battery-Life


