



EpiDeNet: An Energy-Efficient Approach to Seizure Detection for Embedded Systems

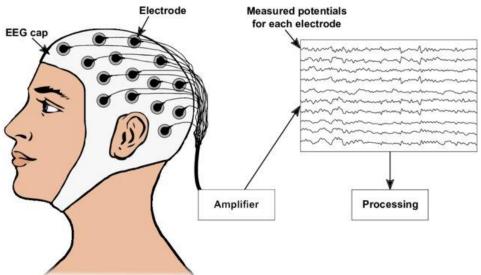
Integrated Systems Laboratory (ETH Zürich)

Thorir Mar Ingolfsson, Upasana Chakraborty, Xiaying Wang, Sandor Beniczky, Pauline Ducouret, Simone Benatti, Philippe Ryvlin, Andrea Cossettini, Luca Benini

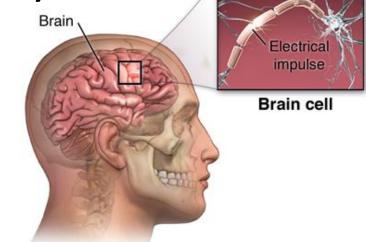
thoriri@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!



We are controlled by electrical activity



Seizures are sudden uncontrolled burst of electrical activity in the brain/

Interrupts normal brain signals

Scalp attenuates signals by almost 90%

Source: https://www.hopkinsmedicine.org/health/conditions-and-diseases/epilepsy/evaluation-of-a-firsttime-seizure

Source: Nagel, Sebastian. Towards a home-use BCI: fast asynchronous control and robust non-control state detection.

- Electroencephalography (EEG) method of monitoring the electrical activity
 - Signals typically range from 10 μ V to 100 μ V \leftarrow low signal to noise ratio

Wearable EEG Devices come at a price

Temporal region

Conventional EEG Caps

- Stigmatizing
- Power hungry
- Not intended for normal day use

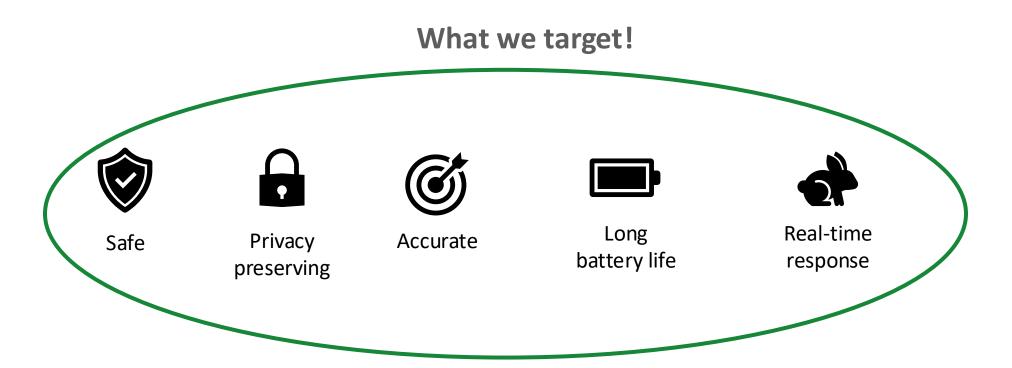
Source: https://www.flickr.com/photos/tim_uk/8135749317

Data acquisition more susceptible to artifacts

Seizure detection algorithms output false positives (FP)

Predicting a seizure when there is no seizure present.

< 1 FP/Day


- Non-stigmatizing
- Low-power
- Data processed locally
 - Privacy
 - Latency

Requirements for a Successful Wearable Device

Goal 1. How do we increase both the Sensitivity and Specificity at the same time?

Two goals:

Goal 2. Lightweight end-to-end approach w/o operating on raw data for real-time response!

(Also being wearable → Wearable on the temporal region)

A custom loss function enables concurrent improvement of sensitivity and specificity

Methods usually report a very high sensitivity

→ Comes down on the Specificity (FP/H) > 1 FP/hour ← —

This is then magnified by the class imbalance

- → Need to inject domain specific knowledge into the network
- Smoothing of output → Latency increase
- Weighting classes → Hard to get right weights
- Up/Down sample → Synthetic Data / Information Loss
- Use of different loss function → We introduce:

Cross Entrop

$$\mathbf{SSWCE}(y, p) = \mathbf{CE}(y, p) + \alpha(1 - \mathbf{SP}) + \beta(1 - \mathbf{SN})$$

Specificity and Sensitivity

Goal 1

EpiDeNet: A Highly Parallelizable and MCU-Deployable

Mix of temporal and spatial filters

We present the novel *EpiDeNet*:

Block	Filters	Kernel	Output
Conv2D + MaxPool	4	(1,4) – (1,8)	(4,C,T//8)
Conv2D + MaxPool	16	(1,16) – (1,4)	(16,C,T//32)
Conv2D + MaxPool	16	(1,8) – (1,4)	(16,C,T//128)
Conv2D + MaxPool	16	(16,1) – (4,1)	(16,C//4,T//128)
Conv2D + AdAvgPool	16	(8,1)	(16,1,1)
Dense	-	-	2

EpiDeNet very efficient due to usage of parallelizable operations (Conv + Pool)

EpiDeNet only utilizes 11k weights

→ fits on resource constrained devices

Seizure Detection datasets

CHB-MIT

- 23 Pediatric Patients
- 256 Hz sampling rate
- 181 Seizures
- Open-Source

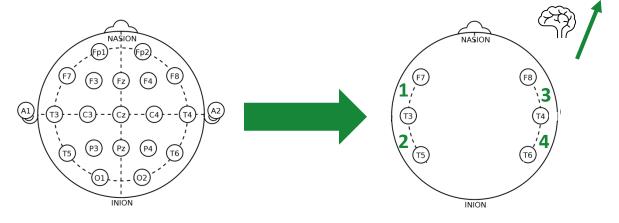
PEDESITE

- 5 Adult Patients
- 1024 Hz sampling rate
- 25 Seizures
- Private

Over > 1000 hours of data!

We limit ourselves to a mimicked wearable setup

→ 4 Channels near temporal region



CHB-MIT Results

Going from a full channels (22) to a reduced montage (4)

Sensitivity 81.91%

Specificity 99.86%

FP/H 1.25

#Seizures 171/181

Sensitivity 68.73%

Specificity 99.75%

FP/H 2.24

#Seizures 165/181

Comparison to other **SoA** works with a **reduced electrode montage**

Random Forest [1] (2 CH)

Sensitivity 96.6%

Specificity 92.2%

FP/H **70.2**

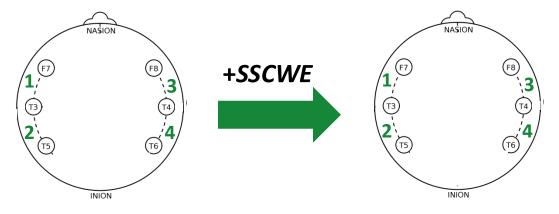
SVM [2] (8 CH)

Sensitivity 92.5%

Specificity 80.1%

FP/H >100

Degradation in accuracy but still able to detect majority of seizures



PEDESITE Results

Integration of the SSCWE increases the performance

Sensitivity 57.17%

Specificity 99.51%

FP/H 2.5

#Seizures 23/25

Sensitivity 60.66%

Specificity 99.74%

FP/H 1.18

#Seizures 23/25

Huge improvement in FP/H (2.12x)

Embedded Deployment of EpiDeNet

GAP8

- 8 Core RISC-V Cluster
- 100 MHz
- Memory:
 - L1: 80kB
 - RAM: 512 kB

GAP9

- 9 Core RISC-V Cluster
- 240 MHz
- Memory:
 - L1: 128kB
 - RAM: 1.5 MB
 - Non Volatile: 2 MB

ARM M4F

ARM M7

- ARM Cortex M4F Core
- 80 MHz
- Memory:
 - SRAM: 128kB
 - Flash: 1 MB

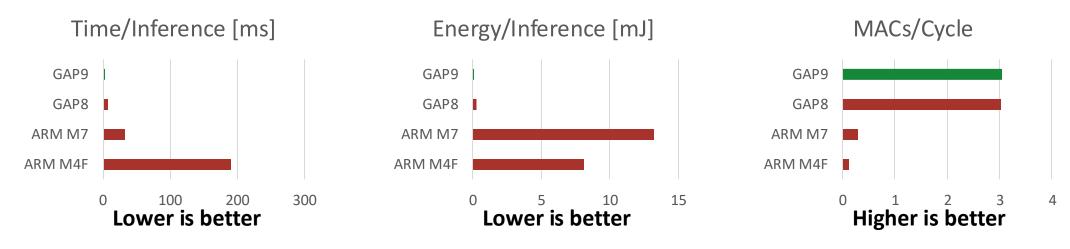
- ARM Cortex M7 Core
- 216 MHz
- Memory:
 - SRAM: 320kB
 - Flash: 1 MB

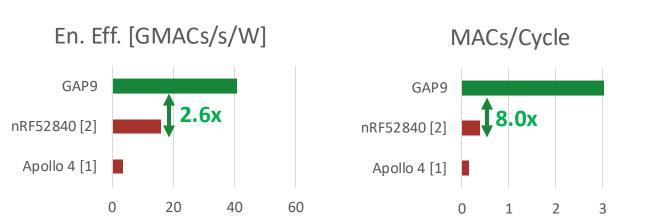
Quantized to 8bit

Quantlab

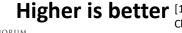
Deployment

TFLite

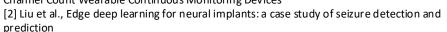



Deployment results

ETH zürich



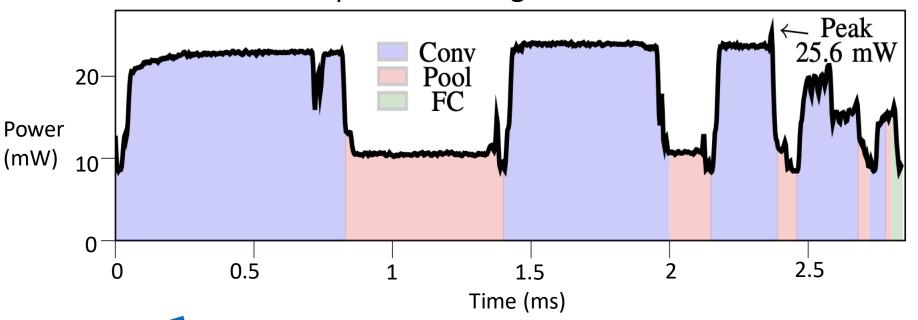
Implementation of EpiDeNet is around 160x more energy-efficient on GAP9 then on ARM



Comparing the best implementation (GAP9) of **EpiDeNet** with SoA implementations in Seizure detection shows:

- **11.6x and 2.6x** more energy efficient
- 18.9x and 8.0x more MACs/Cycle

Higher is better [1] Busia et al., EEGformer: Transformer-Based Epilepsy Detection on Raw EEG Traces for Low Channel Count Wearable Continuous Monitoring Devices



Low power implementation allows for multiday use

- **Detection of 92%** of all seizure events with **SSWCE**
- 3x reduction in false positives using SSWCE

51 μJ energy per 4 s window

Contact info

300mah battery

GAP9 Implementation

