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Motivation Methods

Conclusion

Benefits:

• Near real-time, online 

adaptation

• Combined with TL 

and CL (TOR-TL, 

TOR-ER, TOR-LwF)

• Baseline: chain-TL

• CL mitigates catastrophic 

forgetting: Experience Replay 

(ER), Learning w/o Forgetting 

(LwF)

• Novel TOR ODL workflow introduced for EEG-based BMI

systems.

• Tackling inter-session variability through near real-time data

acquisition and online finetuning for out-of-distribution

sessions.

• Achieved a 46% reduction in calibration time, lowering it to 1.6

minutes, with up to 92% accuracy.

• Deployed on GAP9 MCU with 50 mW power, 1 mJ per learning

step, and 21.6 ms runtime.

• A robust, user-friendly, and energy-efficient solution to increase

user acceptance of BMIs in non-clinical settings.
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Results

…

Learning Framework and TOR Workflow

Dataset Acquisition

Dataset:
• 2-class (left/right-hand MM), 4s / trial

• 1 subject, 7 sessions, 100 trials / sess.

• Preprocess: BP + Notch + Moving Avg.
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Classification Model & On-device Learning
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TOR Performance over Multiple Sessions

On-device Measurements

#Train. Trials & Acq. Time: 
• TOR methods -> fewer 

#training trials, less acquisition 

time

• TOR-ER -> best among all, 

#trials 46% fewer than chain-TL, 

acq. time 5.3min per session

Accuracy: 
• TOR-ER -> best among TOR

• TOR accuracy increases over 

time, TOR-ER comparable 

with chain-TL, especially for 

the last 3 sessions (88.8%)

• 7.6 bit/min ITR for TOR-ER

Optimal chain-TL baseline: 60/40 train/test, 86.2% acc., ~10min acq. time per session

Accuracy threshold TAcc:
• TAcc increases -> Required 

#training data increases, 

accuracy increases in most 

sessions

#Trials per subsession trls: 
• trls = 10 -> an optimal

accuracy-training time trade-off, 

better than trls = 5 and trls = 20

~1mJ, 21.6ms per training step
Adaptation time: 3.2s for 15 epochs 

<< 1.6min acquisition time per subsession800mV, 370MHz on GAP9

On-site adaptation for an improved user experience!

500Hz Sampling Rate

Train-On-Request (TOR)
Optimization: Only train when 

needed

• Finetune the model when 

performance is unsatisfactory 

(Acc. ≤ TAcc)#Trials per subsession: trls 

More successful sessions 

observed in last 3 sessions
Unsuccessful / Successful TOR Session

Acc.: 56%

Acq. time: 

8.3min

Adapt. time: 

16.2s 

Acc.: 93.3%

Acq. time: 

1.6min

Adapt. time: 

3.2s 

Brain-machine interfaces (BMIs) aim to provide a direct communication 

pathway between the human brain and external devices.

“Turn left!”

“left hand”

Data acquisition Classification

Brain—Machine Interface
Motor imagery, e.g. imagine 

left-hand movement Device control

Long calibration 

time for Model 2

Session 1 Session 2

Within-session Accuracy: 

90.00%

Within-session Accuracy: 

86.43%

Train & Val Train & Val

Directly using old model on new session’s data 

→ Low Inter-Session Validation Accuracy: 63.57%
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Continual On-Device Learning (ODL) with short calibration time is needed! 

Requirements for 
Wearable BMIs:

Non-stigmatizing and comfortable BMI 

with edge computing capabilities!

Stigmatizing

Power hungry

Short lifetime

Bandwidth

Privacy

Latency

New Trend: BMI with Edge Computing!

• Achieved a 46% reduction in calibration time, lowering it to 1.6

minutes, with up to 92% accuracy.

• Deployed on GAP9 MCU with 50 mW power, 1 mJ per learning

step, and 21.6 ms runtime.
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