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We are controlled by electrical activity

• Everything we do/think is electrical activity

• Brain signals decode complex thoughts

• Electroencephalography (EEG) method of monitoring the electrical activity

• Signals typically range from 10 µV to 100 µV  low signal to noise ratio

Source: Nagel, Sebastian. Towards a home-use BCI: fast asynchronous 
control and robust non-control state detection. 

EEG Data

“It is very warm in here”

?
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Wearable EEG Devices come at a price

Conventional EEG Caps

• Stigmatizing
• Power hungry
• Not intended 
     for normal day use

Wearable solutions

• Non-stigmatizing
• Low-power
• Data processed locally

• Privacy

• Latency

Data acquisition more susceptible to artifacts 

Models need to be robust and accurate to compensate

Not full head 
coverage

Source: https://www.flickr com/photos/tim_ uk/8135749317

Dry 8 channel 
EEG System



Requirements for a Successful Wearable Device

4

Privacy 
preserving

Accurate Long 
battery life

Real-time 
response

Safe

What we target!

Goal 1. How do we maximize accuracy of speech classification for wearable devices.

Goal 2. Lightweight end-to-end approach with operating on raw data for real-time response!
Two goals:
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Speech Decoding from Wearables → Vowel Decoding
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First step to full speech decoding from scalp EEG is to do →

 Vowel Classification (/a/, /e/, /i/, /o/, and /u/)

How we think of vowels is not universally the same

/a/ → [a]   /i/ → [ɪ]  /e/ → [ɛ] 

/a/ → [æ]/[a] /i/ → [iː]/[ɪ]

How do you think of the different vowels?

(Is it always the same?)

/e/ → [ɤ]/[ə] 



Fully-Dry 8 Channel Wearable EEG Vowel Dataset
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Instruction Rest

Random between 5-6s
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Time [s]0 4 109
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Different Vowels Rest

In random order
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5 Subjects (Different origins)

Five sessions – 30 trials each

Think about saying the vowel shown 
on screen 

Data gathered at 500 Hz

BioGAP with a tailored headband and 
8 channels of dry electrodes.



Three main different ways of evaluating 
the vowel classification task
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We consider three different training methodology and evaluation:

1. Vowel vs Rest (/a/ - rest, /e/-rest, /i/-rest, /o/-rest, /u/-rest)      
And all vowels grouped together vs rest.

2. Inter-vowels (/a/-/e/, /a/-/i/ etc.) (All pairs)

3. Six class classification (/a/, /e/, /i/, /o/, /u/, rest) 

Trimming vs No Trimming Instruction Rest

Random between 5-6s

Previous 

trial

Next 

trial

Time [s]0 4 109

Vowel imagination or rest Rest, i.e., no imagination

Different Vowels Rest

In random order

A E I O U

EEG trimmed from front or back

Goal 1
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VowelNet: A Highly Parallelizable and MCU-Deployable 
Neural Network Architecture

Block Filters Kernel Output

Temporal Conv + BN 32 (1,64) (32,C,T)

Depthwise Conv + Act 64 (C, 1) (64,1,T)

Pooling & Dropout - (1,4) (64,1,T//4)

Separable Conv 64 (1,16) (64,1,T//4)

Conv + BN + Act 64 (1,1) (64,1,T//4)

Pooling & Dropout - (1,8) (64,1,T//32)

Dense - - N

VowelNet very efficient due to usage of 
parallelizable operations (Conv + Pool)

We present the novel VowelNet:
Focus on temporal filters

VowelNet only utilizes 18k weights
→ fits on resource constrained devices

Goal 2



Rest seems to be more easily distinguishable
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Random Guessing : 16.67%



To trim or not to trim
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•Vowel vs Rest: 3.30% improvement
•Inter-vowel:19.22% improvement
•Six-Class: 16.09% improvement

Cutting around 3s from end of signal 
(back of signal)



More data better results
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Embedded Deployment of VowelNet

GAP9

• 9 Core RISC-V Cluster
• 240 MHz
• Memory:

• L1: 128kB
• RAM: 1.5 MB
• Non Volatile: 2 MB

Quantized to 8bit

Quantlab
Deployment

DORY

MCU on BioGAP

Energy efficiency  45.39 GMAC/s/W
Inference:    40.9 ms
Energy/Inference: 0.71 mJ
Average Power:  17.43 mW
Throughput:   791.38 MMAC/s
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Conclusions

Contact infoBioGAP (GAP9) Implementation

150mAh battery

→ 25.6 hours

• 91% accuracy in vowel vs rest classifcation
• Up to 68% accuracy in inter-vowel classification

Energy efficiency  45.39 GMAC/s/W
Inference:    40.9 ms
Energy/Inference: 0.71 mJ
Average Power:  17.43 mW
Throughput:   791.38 MMAC/s
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