

VowelNet: Enhancing Communication with Wearable EEG-Based Vowel Imagery

Integrated Systems Laboratory (ETH Zürich)

Thorir Mar Ingolfsson, Victor Javier Kartsch Morinigo, Xiaying Wang, Andrea Cossettini, Luca Benini

thoriri@iis.ee.ethz.ch

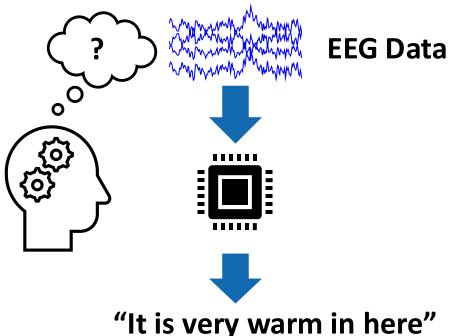
@pulp_platform

youtube.com/pulp_platform 🕒

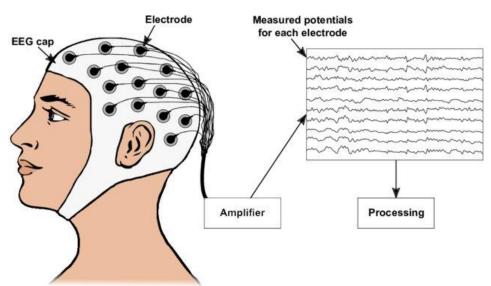
Open Source Hardware, the way it should be!

We are controlled by electrical activity

- **Everything we do/think is electrical activity**
 - Brain signals decode complex thoughts



"It is very warm in here"



Source: Nagel, Sebastian. Towards a home-use BCI: fast asynchronous control and robust non-control state detection.

- Electroencephalography (EEG) method of monitoring the electrical activity
 - Signals typically range from 10 μ V to 100 μ V \leftarrow low signal to noise ratio

Wearable EEG Devices come at a price

Conventional EEG Caps

- **Stigmatizing**
- **Power hungry**
- Not intended for normal day use

Source: https://www.flickr.com/photos/tim uk/8135749317

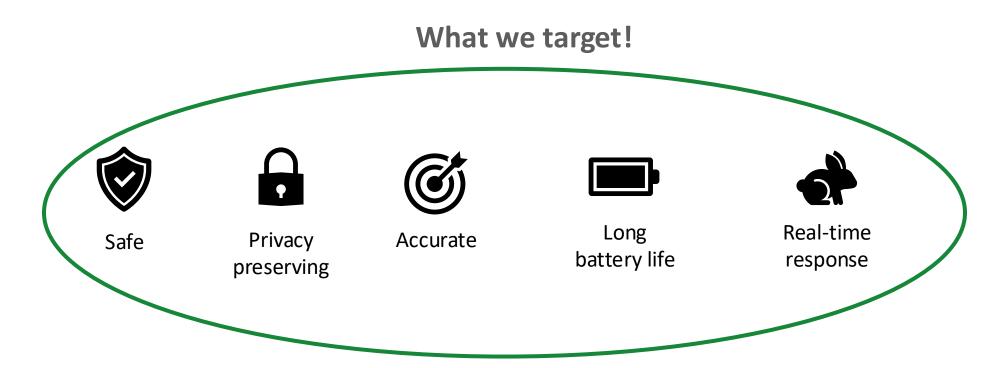
Data acquisition more susceptible to artifacts



Dry 8 channel EEG System

- Low-power
- **Data processed locally**
 - **Privacy**
 - Latency

Requirements for a Successful Wearable Device



Goal 1. How do we **maximize accuracy** of speech classification for wearable devices.

Two goals:

Goal 2. Lightweight end-to-end approach with operating on raw data for real-time response!

Speech Decoding from Wearables -> Vowel Decoding

First step to **full speech decoding** from scalp EEG is to do \rightarrow

Vowel Classification (/a/, /e/, /i/, /o/, and /u/)

How we think of vowels is **not universally the same**

$$/a/\rightarrow$$
 [a]

$$/i/\rightarrow [I]$$

$$/a/\rightarrow [a]$$
 $/i/\rightarrow [t]$ $/e/\rightarrow [\epsilon]$

$$/a/\rightarrow [æ]/[a]$$
 $/i/\rightarrow [i:]/[i]$

$$/i/ \rightarrow [i:]/[I]$$

$$/e/\rightarrow [Y]/[\partial]$$

How do **you think** of the different vowels?

(Is it always the same?)

Fully-Dry 8 Channel Wearable EEG Vowel Dataset

5 Subjects (Different origins)

Five sessions – 30 trials each

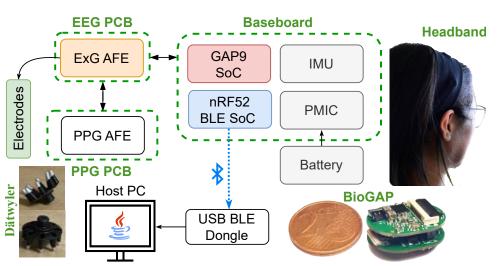
Different Vowels Rest Random between 5-6s
In random order
Instruction
Rest
Vowel imagination or rest

Random between 5-6s
Random between 5-6s
Random between 5-6s
Random between 5-6s
Rest, i.e., no imagination

Think about saying the vowel shown on screen

Data gathered at 500 Hz

BioGAP with a **tailored headband** and **8 channels** of dry electrodes.

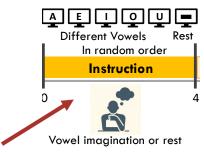


Three main different ways of evaluating the vowel classification task

We consider three different training methodology and evaluation:

- 1. **Vowel vs Rest** (/a/ rest, /e/-rest, /i/-rest, /o/-rest, /u/-rest) And all vowels grouped together vs rest.
- 2. Inter-vowels (/a/-/e/, /a/-/i/ etc.) (All pairs)
- 3. Six classification (/a/, /e/, /i/, /o/, /u/, rest)

Trimming vs No Trimming



EEG trimmed from front or back

VowelNet: A Highly Parallelizable and MCU-Deployable Neural Network Architecture

Focus on temporal filters

We present the novel *VowelNet*:

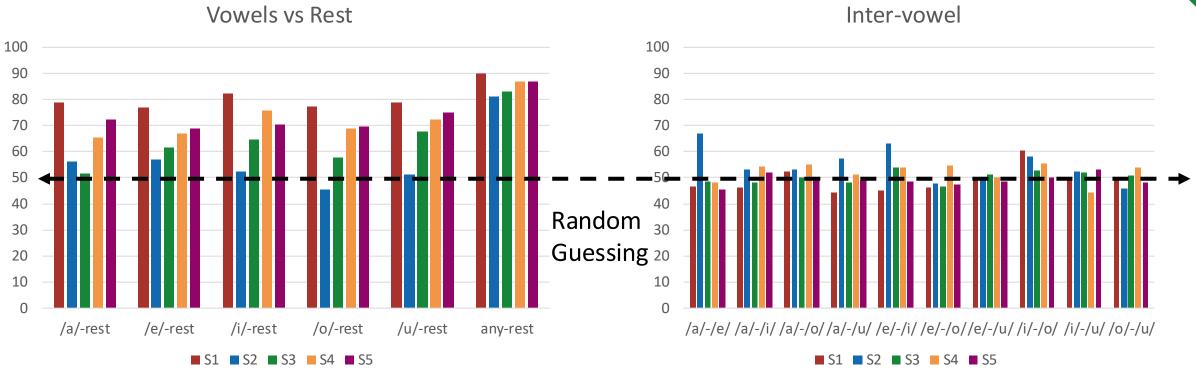
Block	Filters	Kernel	Output
Temporal Conv + BN	32	(1,64)	(32,C,T)
Depthwise Conv + Act	64	(C, 1)	(64,1,T)
Pooling & Dropout	-	(1,4)	(64,1,T//4)
Separable Conv	64	(1,16)	(64,1,T//4)
Conv + BN + Act	64	(1,1)	(64,1,T//4)
Pooling & Dropout	-	(1,8)	(64,1,T//32)
Dense	-	-	N

VowelNet very efficient due to usage of parallelizable operations (Conv + Pool)

VowelNet only utilizes 18k weights

→ fits on resource constrained devices

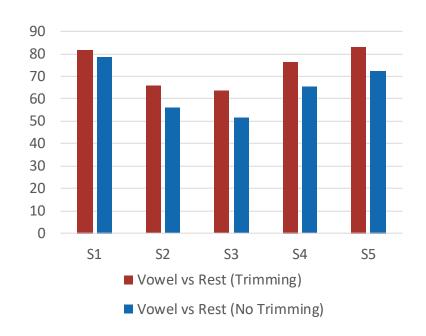
Rest seems to be more easily distinguishable

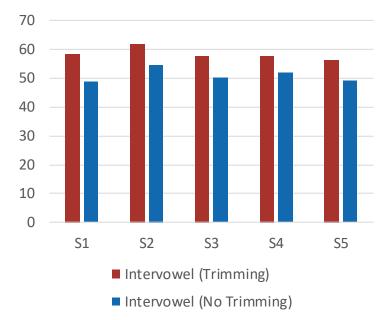


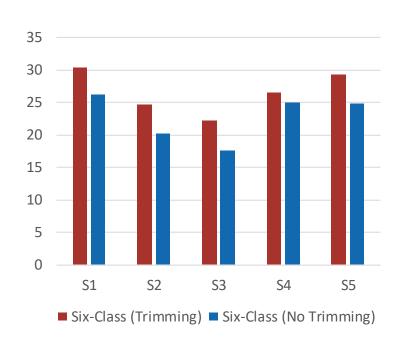
	S1	S2	S3	S4	S 5
Six-class	26.1%	20.1%	17.5%	24.9%	24.8%

Random Guessing: 16.67%

To trim or not to trim







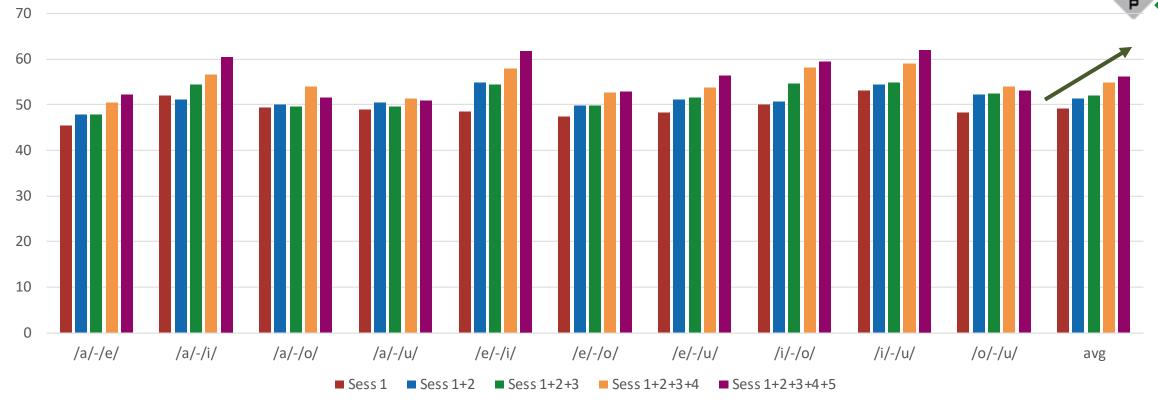
•Vowel vs Rest: 3.30% improvement

•Inter-vowel:19.22% improvement

•Six-Class: 16.09% improvement

Cutting around 3s from end of signal (back of signal)

More data better results



Adding sessions on average showcases 14.2% improvement

Embedded Deployment of VowelNet

Quantlab DORY

Quantized to 8bit Deployment

- 9 Core RISC-V Cluster
- 240 MHz
- Memory:
 - L1: 128kB
 - RAM: 1.5 MB
 - Non Volatile: 2 MB

Energy efficiency 45.39 GMAC/s/W

Inference: 40.9 ms

Energy/Inference: 0.71 mJ

Average Power: 17.43 mW

Throughput: 791.38 MMAC/s

Conclusions

- 91% accuracy in vowel vs rest classification
- Up to 68% accuracy in inter-vowel classification

Energy efficiency 45.39 GMAC/s/W

Inference: 40.9 ms

Energy/Inference: 0.71 mJ

Average Power: 17.43 mW

Throughput: 791.38 MMAC/s

150mAh battery

