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Why a foundational model for EEG

X: Raw Data

Y: Labels

Cheap

Expensive

• Supervised training 

• Self supervised training

X

y
Training

X Training

Reconstructions

Foundation

Low signal-to-noise ratio

High subject-specific variability 

Challenges for EEG

Task-dependent annotation
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Mamba for an efficient foundational model

Transformer

Strong performances: SoTA models

𝜪 𝒏𝟐 computation and memory 

complexity
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𝜪 𝒏  computation and memory complexity
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Steps

1. Pretraining description:

Pretraining data and setup 
to reach a broad and 
comprehensive knowledge 

2. Model description:

Definition of the model 
components:
• Backbone: tokenizer
• Central: encoder
• Head: decoder

3. Finetuning evaluation

Evaluate transferability in 
different downstream tasks
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TUEG: Temple University Hospital EEG:

• Over 25,000 EEG recordings

• Around 21,000 hours of EEG recordings

• Over 10,000 patients:
   

Pretraining dataset

• Range from 1 year to 90 years
• Average of 51 years
• 51% female 

Age distribution

Bipolar TCP montage
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FEMBA: model architecture

FEMBA tokenizer

0 1 79

FEMBA encoder 

….

Input signal:
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Pos Embedding

Lightweight 
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Nx Bidirectional 
mamba

Forward 

SSM

Backward

SSM

Encoded tokens

Reconstructions:

Lightweight 

decoder

Mamba block

Linear projection

Linear projection
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Mamba: Robust Signal Reconstruction

Results for a Base model:
Encoder: 12 Bidirectional Mamba blocks
Embedded dimension:35
Total number of parameters: 47.7 Million Impressive signal match!
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Benchmarking Foundation Models: The Datasets

Seizure detection Artifact detection

Slowing events detection

TUAB: Temple University Hospital Abnormal TUAR: Temple University Hospital Artifact

• 2 Classes

• Balanced dataset:

1.521  Normal
 1.472   Abnormal

• 2,329 patients

• 14 artifacts → 5 groups

• Unbalanced dataset

•  213 patients 

• 1000 patients 

• 4 Classes

TUSL: Temple University Slowing Events
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SOTA results for 2 out of 3 datasets:

Seizure detection Artifact detection

Slowing events detection

Previous SOTA model LaBraM

Accuracy :  82.52%  vs  81.72%

↓ 0.7%  accuracy loss

[1] W. Jiang et al., “Large brain model for learning generic representa- tions with
tremendous eeg data in bci,” in The Twelfth International Conference on Learning 

Representations, 2024 
[2] Y. Chen et al., “Eegformer: Towards transferable and interpretable large-scale eeg

foundation model,” in AAAI 2024 Spring Symposium on Clinical Foundation Models

Previous SOTA model EEGFormer

Previous SOTA model EEGFormer

AUROC :  85.2%    vs  91.80% 

6% gain
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AUROC :  71.3%    vs  73.1% 

2% gain



Light on memory, high on speed!

Peak of GPU memory usage(MB)

up to 5.7x less memory than LaBraM

2x less memory than EEGFormer Tiny

FLOPs (Billion)

~ 3.5x faster than LaBraM

27x faster than EEGFormer 

2x 

5.7x 

1.5x 

3.6x 

3.5x 

27x 
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• SOTA results for artifact detection

• SOTA results for slowing events detection

• Close to SOTA for seizure detection

•  Up to 27x speedup 

•  Up to 5.7x less memory

FEMBA: high performance at a cheaper price

FEMBA- Tiny (<8 million parameters) Indicates potential for future use in

battery-constrained wearable devices
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