
47TH ANNUAL

International conference of the IEEE Engineering in Medicine And Biology Society

FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model

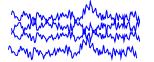
Integrated Systems Laboratory (ETH Zürich)

Anna Tegon, Thorir Mar Ingolfsson, Xiaying Wang, Luca Benini, Yawei Li ategon@iis.ee.ethz.ch

PULP Platform

Open Source Hardware, the way it should be!

Why a foundational model for EEG


Challenges for EEG

Low signal-to-noise ratio

High subject-specific variability

Task-dependent annotation

X: Raw Data Cheap

Y: Labels

Expensive



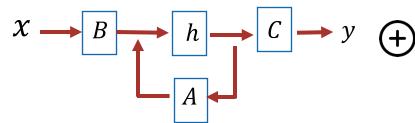
Supervised training

Self supervised training

$$X \longrightarrow \boxed{ Training}$$

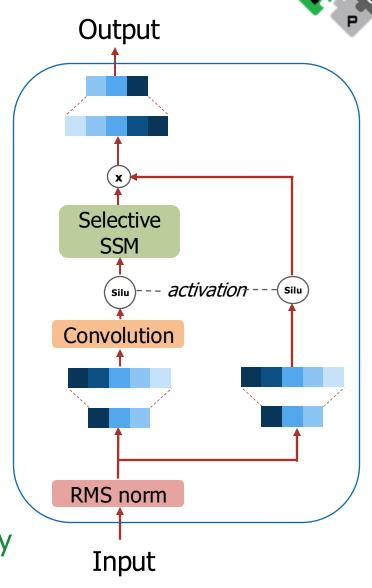
Mamba for an efficient foundational model

Transformer


- **/**
- Strong performances: SoTA models
- $imes o(n^2)$ computation and memory complexity

Mamba

State space models

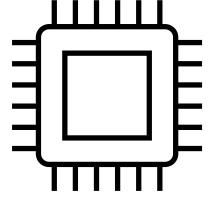


Selective scan operation

Kernel fusion

Recomputation

o(n) computation and memory complexity



Steps

1. Pretraining description:

Pretraining data and setup to reach a <u>broad</u> and <u>comprehensive</u> knowledge

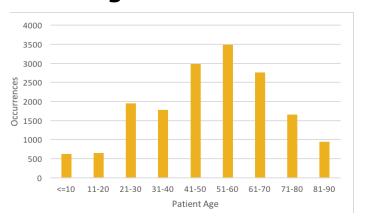
2. Model description:

Definition of the model components:

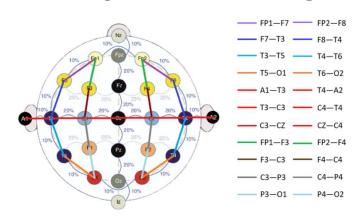
- <u>Backbone</u>: tokenizer
- <u>Central</u>: encoder
- <u>Head</u>: decoder

3. Finetuning evaluation

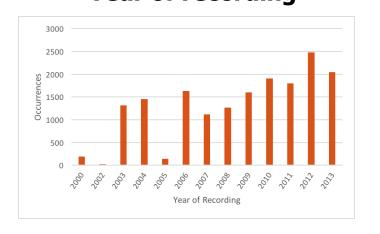
Evaluate <u>transferability</u> in different downstream tasks



Pretraining dataset

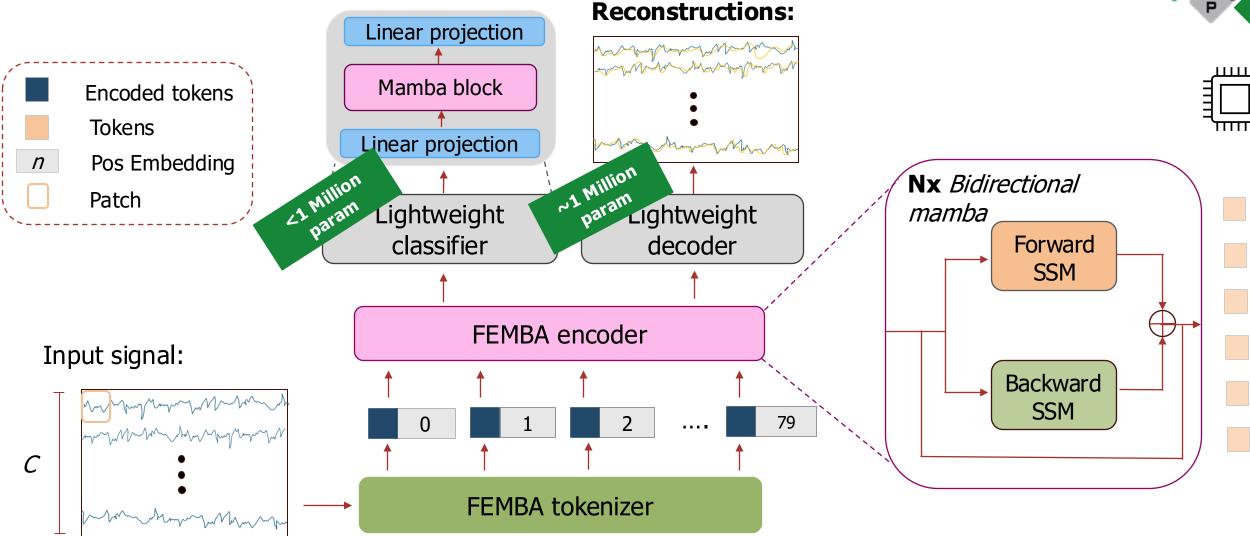

TUEG: *Temple University Hospital EEG:*

- Over **25,000** EEG recordings
- Around **21,000** hours of EEG recordings
- Over **10,000** patients:
 - Range from 1 year to 90 years
 - Average of 51 years
 - 51% female


Age distribution

Bipolar TCP montage

Year of recording



FEMBA: model architecture

ALMA MATER STUDIORUM Università di Bologna

ETH zürich

Mamba: Robust Signal Reconstruction

Results for a **Base model**:

Encoder: 12 Bidirectional Mamba blocks

Embedded dimension:35

Total number of parameters: 47.7 Million

Impressive signal match!

Benchmarking Foundation Models: The Datasets

Seizure detection

TUAB: Temple University Hospital Abnormal

- 2,329 patients
- 2 Classes
- Balanced dataset:
 - 1.521 Normal
 - 1.472 Abnormal

Artifact detection

TUAR: Temple University Hospital Artifact

- 213 patients
- 14 artifacts → 5 groups
- Unbalanced dataset

Slowing events detection

TUSL: Temple University Slowing Events

- 1000 patients
- 4 Classes

SOTA results for 2 out of 3 datasets:

Seizure detection

Previous SOTA model LaBraM

Accuracy: 82.52% vs 81.72%

↓ 0.7% accuracy loss

Artifact detection

Previous SOTA model **EEGFormer**

AUROC: 85.2% vs 91.80%

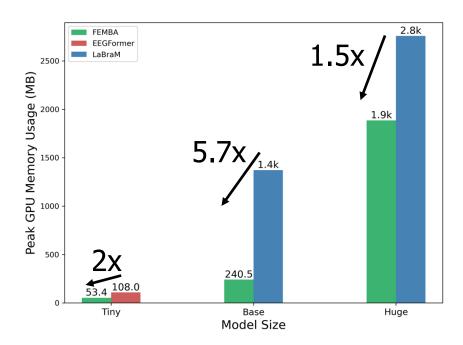
Slowing events detection

Previous SOTA model **EEGFormer**

AUROC: 71.3% vs 73.1%

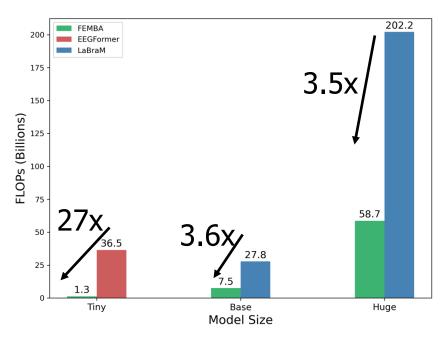
[1] W. Jiang et al., "Large brain model for learning generic representations with tremendous eeg data in bci," in The Twelfth International Conference on Learning Representations, 2024

[2] Y. Chen et al., "Eegformer: Towards transferable and interpretable large-scale eeg foundation model," in AAAI 2024 Spring Symposium on Clinical Foundation Models



Light on memory, high on speed!

Peak of GPU memory usage(MB)



up to **5.7x less** memory than LaBraM

2x less memory than EEGFormer Tiny

FLOPs (Billion)

3.5x faster than LaBraM

27x faster than EEGFormer

FEMBA: high performance at a cheaper price

- SOTA results for artifact detection
- SOTA results for slowing events detection
- Close to SOTA for seizure detection

FEMBA- Tiny (<8 million parameters) Indicates potential for future use in battery-constrained wearable devices

