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The Challenge With EEG Data
➢Topological Heterogeneity: Electroencephalography (EEG) datasets vary 

significantly in the number and placement of electrodes, which limits the 
generalization of traditional analysis models.

➢Computational Bottlenecks: Existing methods are often computationally intensive, 
with complexity that can increase quadratically with the number of channels, 
making large-scale analysis difficult.

➢Variable Data Structures: EEG recordings also differ in duration and sampling 
rates, adding another layer of complexity.

Our Solution: LUNA
LUNA is a self-supervised foundation model designed to overcome these 
challenges. It projects multi-channel EEG data into a fixed-size, topology-
agnostic latent space.

➢Channel Unification: LUNA employs learned queries that use cross-
attention to interact with EEG features from a variable number of 
channels.

➢Dual-Loss Pre-training: The model is pre-trained using a 
combination of a masked-patch reconstruction loss and an auxiliary query 
specialization loss to encourage diverse and informative representations.

Key Results & Contributions
High Performance Across Benchmarks:

➢Achieves state-of-the-art performance with 

a 0.921 AUROC on the TUAR benchmark.

➢Demonstrates highly competitive results in tasks 
such as artifact detection, slowing classification, 
and emotion recognition.

➢Allow query interpretability by looking at 
learned queries. 

Unprecedented Efficiency:

➢Reduces computational load by 300x in FLOPs

➢ Saves up to 10x in GPU memory usage, 
enabling scalable analysis of large datasets.

The Core Innovation:
Topology-Invariant Encoder: Standard 
Transformers scale quadratically 

𝑶 𝑺 × 𝑪 𝟐 with channels Solution: We 

project variable channels into a fixed 
latent space Q using learned queries. 

Result: This decouples computational cost 
from electrode count, enabling linear 
scaling.

Linear Scaling: LUNA (blue lines) 
maintains constant compute cost even 
as channel density increases, unlike 
baselines (grey lines). 

Pre-training Data

TUEG (20/22 Channels), Siena (29 Channels) >21,000 hours of raw EEG

Masked patch reconstruction with an auxiliary Query Specialization
Loss to force diversity in learned spatial filters.

t-SNE of LUNA embeddings (before finetuning)

Clustering by signal type already visible

Efficiency Analysis

Resource Savings: Reduces FLOPs by 

300× and GPU memory by 10×
compared to LaBraM-Huge. * Impact:
Enables training on high-density caps 
where other models run out of memory.

3 model sizes of LUNA
Base Large Huge

7M 43M 311M
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