

Robust and Practical Machine Learning Solutions for Wearable Biomedical Edge Devices

Integrated Systems Laboratory (ETH Zürich)

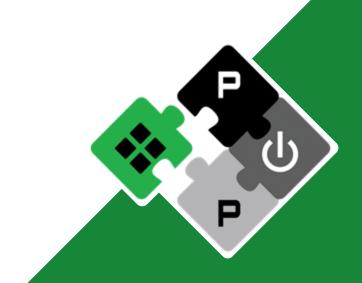
Thorir Mar Ingolfsson

PhD Examination (Diss.-No. 31324), July 1, 2025

Chair: Prof. Dr. Janos Vörös

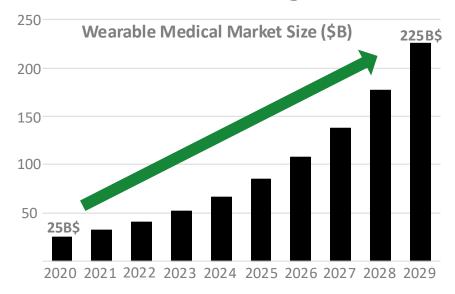
Examiner: Prof. Dr. Luca Benini

Co-examiner: Prof. Dr. Mauro Mangia

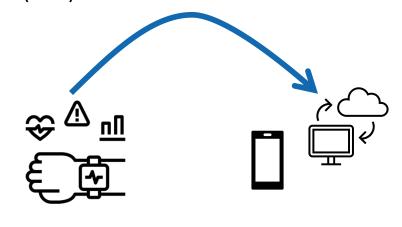


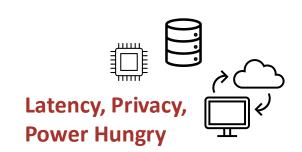
The Wearable Revolution & Its Processing Gap

Rapid Growth in Wearable Health Monitoring

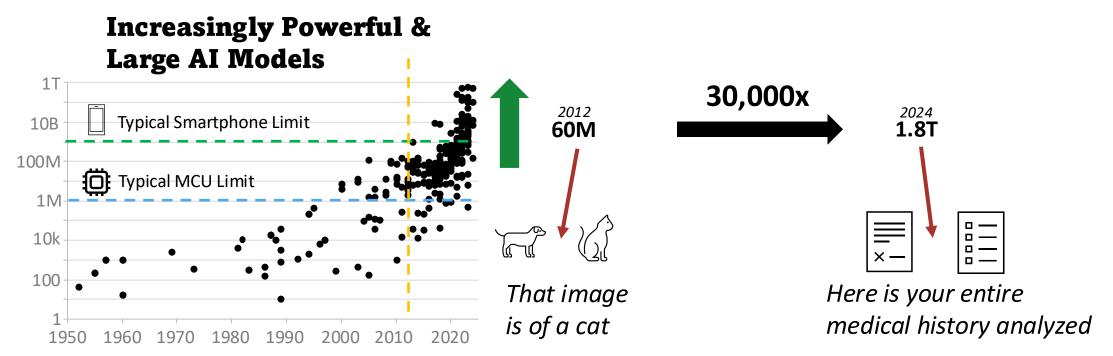


Heart Rate (ECG,PPG), Brain Signals (EEG) etc.





A Widening Chasm: Powerful AI vs Tiny Devices



How do we push these large brains onto small battery powered edge devices?

Bridging the Gap with Practical, Robust and Scalable Al

Resource efficiency Strict computational budget.

Signal quality and noise Real world bio-signals are messy.

Adapting to a changing world Signals evolve and change over time

Practical

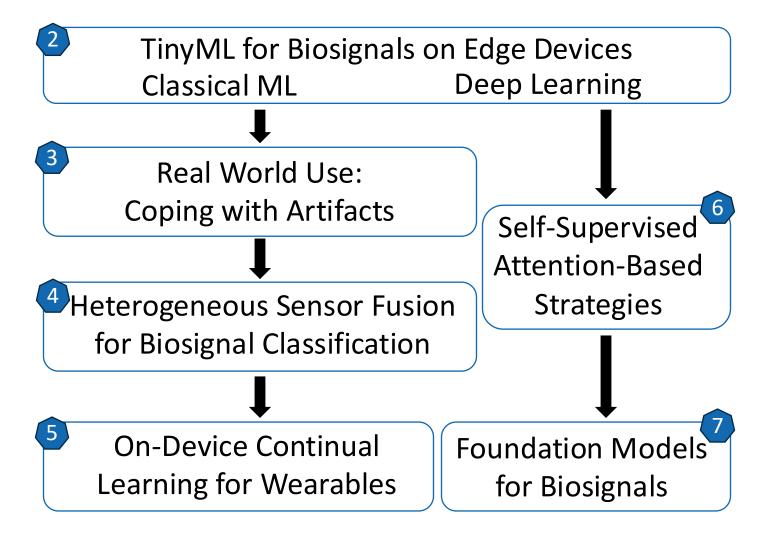
Days/weeks runtime

Tackle noise head on

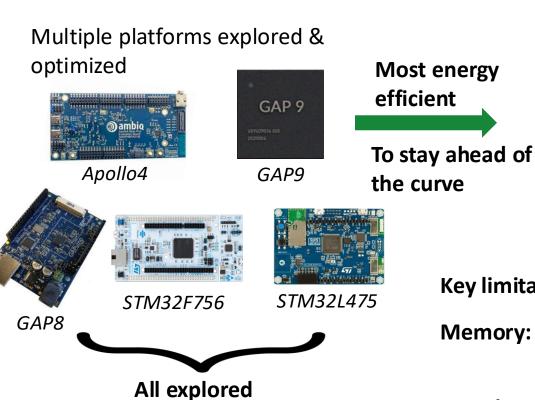
Continual adaptation & multi-domain use

And to do these things we need **HW <-> SW Co-design**

The Resarch Roadmap: A Path to Universal Models



Algorithms for HW and HW for Algorithms





Key limitations:

L1 128kB Memory:

L2 1.5MB

Speed: 400MHz

9 Core

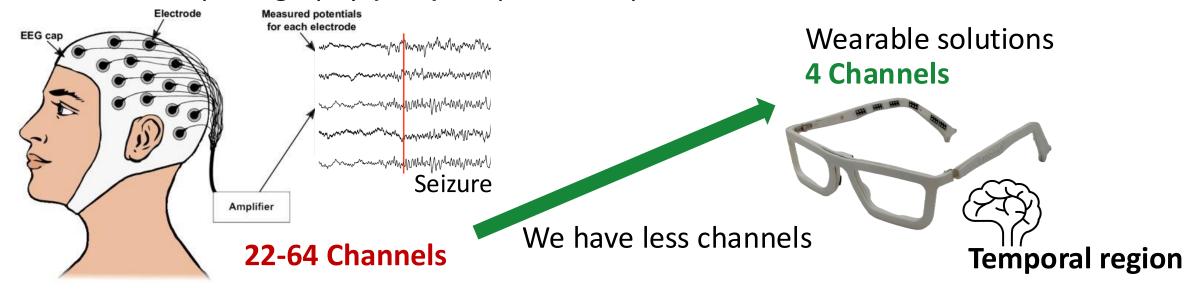
computation

cluster

BioGAP

Seizure Detection Use-Case: EEG as a Challenging Biosignal

Electroencephalography (EEG): 10 μV to 100 μV ← low SNR



Sensitivity: Seizure Windows Detected

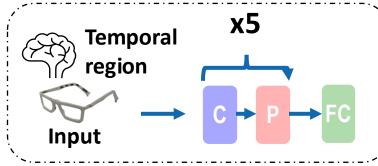
Specificity: Normal Windows Detected

False Positives (FP): Wrong Alert of a Seizure

PEDESITE

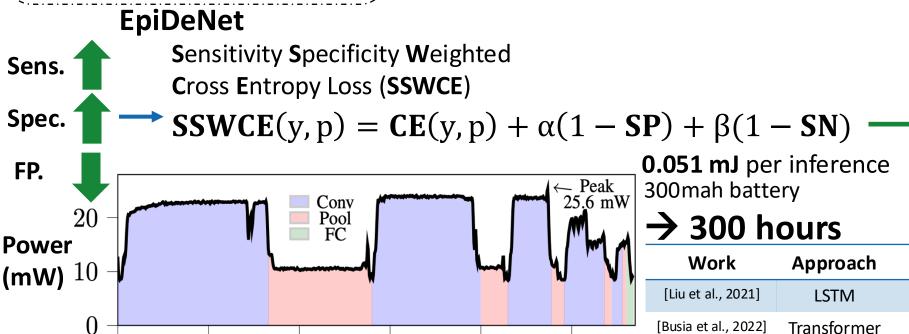
EpiDeNet: An Efficient Foundation for

On-Device Seizure Detection



0.5

- ✓Operates on 2/3 only 4 channels
- ✓ Hardware and algorithmic co-design
- Compact and Efficient, 11K parameters



Time (ms)

94% Seizures detected

2.28 FP/h

Further reduced to 0.51 FP/day using

ZWZ	
V	

Sensor fusion

	<u> </u>	<u> </u>		
Work	Approach	Time	En. Eff. [GMAC/s/W]	
[Liu et al., 2021]	LSTM	100ms	16.00	
[Busia et al., 2022]	Transformer	405ms	3.51	
Us	CNN	2.84ms	40.61	

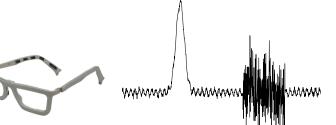
2.5

The Real-World Hurdle: The Dominance of Artifacts

SoA models are trained with clean, clinical grade data

Very high Sens, Spec, and low FP.

✓ Data quality (SNR) high, no artifacts

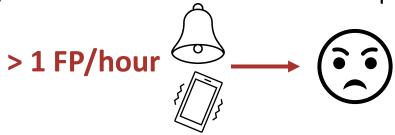


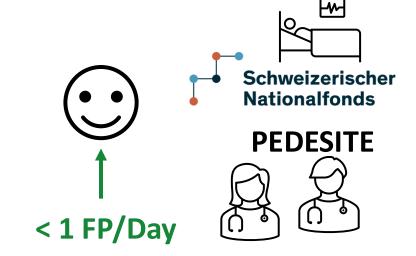
False alarms

Wearable, real-world data is messy

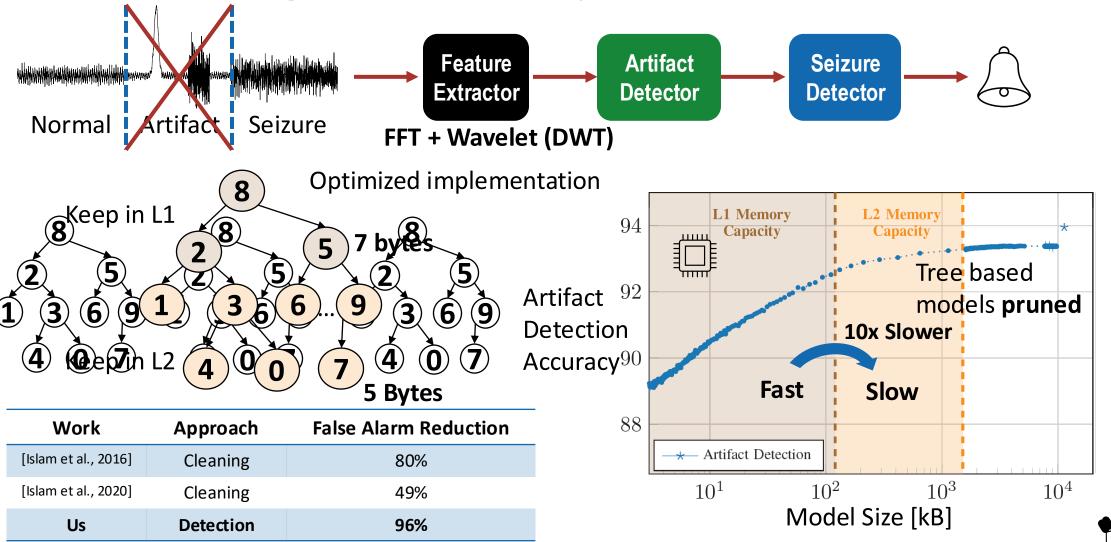
False alarms predicted by models

Predicting a seizure when there is no seizure present.

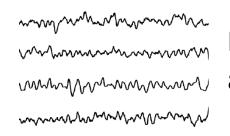




Fitting Decision Trees On Limited Memory While Reducing False Alarms by 96%



Hardware validation, this is practical not just theoretical.



Data streaming in at 250-500 Hz

16/32 kB per 4s window (4 channels)

Feature extraction

4 Cores FFT Features

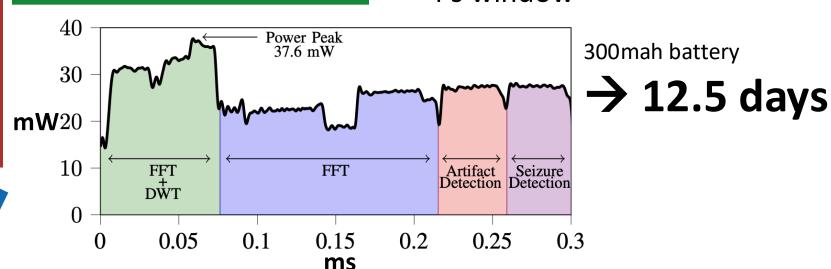
4 Cores DWT Features

1 Core for memory transfers

Artifact/Seizure Detection

of trees Divisible by number of Cores

7.93 μJ energy per 4 s window

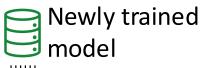


GAP9 Implementation

Artifact Detection in Live-Demos for BCI Drone Control

The Next Challenge: Adapting to Evolving Biosignals

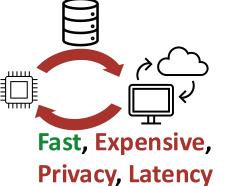
But Biosignals change with time



Good performance

Same model, new data

Bad performance



Quantized to INT8

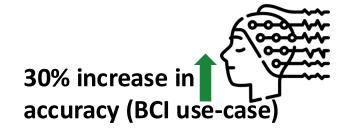
C → P → FC

Quantized FP32
ODL on last layer

18.6 kB of additional storageOne training step in 22 ms at a15mW power budget

Minimal effect on battery life

Work	#Params.	Meas.	Accuracy
[Ma et al., 2022]	291.6k	X	79%
[Lee et al., 2023]	8.9k	X	71%
Us	7.7k	V	91%



The Next Frontier: From Specific to Universal Models

X: Raw Data Cheap

Heart Rate (ECG)

~ 10TBs (20k+ hours).

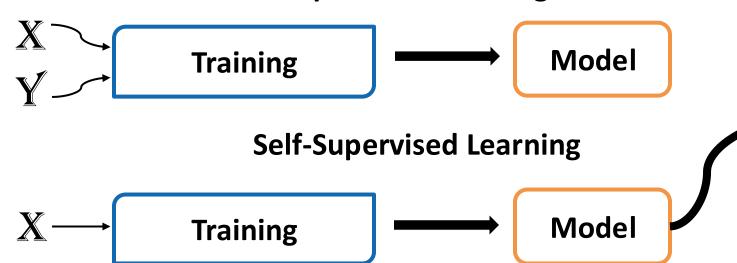
Brain Signals (EEG)

Muscle Activations (EMG)

Y: Labels
Expensive

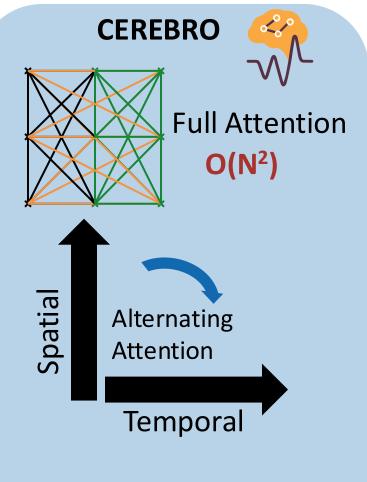
Atrial Fibrillation, Seizure, etc.

Supervised Learning



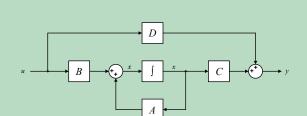
Foundation

A Toolkit for Efficient Foundation Models



Solves Spatio-Temporal Complexity

FEMBA



Utilizing State Space Models

 $O(N^2) \longrightarrow O(N^2)$

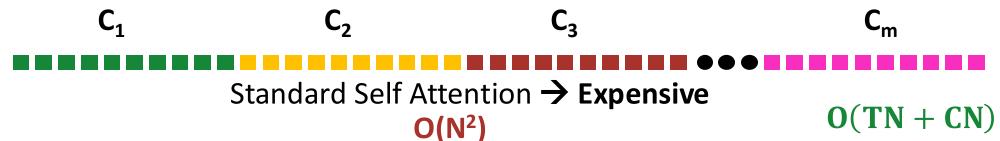
Linear Scaling

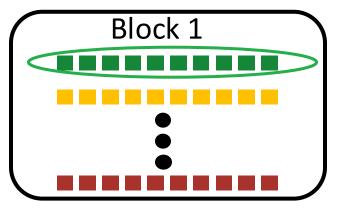
LUNA

Widely Varying #Channels

Channel Invariance

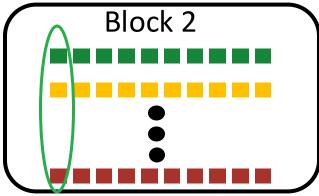
Innovation 1: CEReBrO's Alternating Attention





Intra-Channel Attention

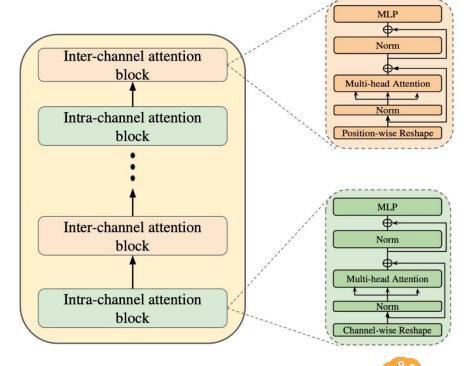
Self-attention between tokens of the same channel



ETH zürich

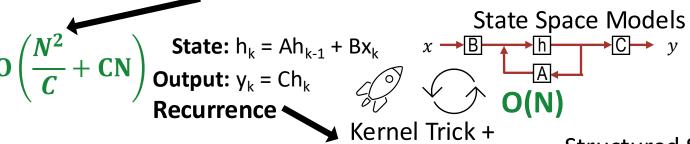
Inter-Channel Attention

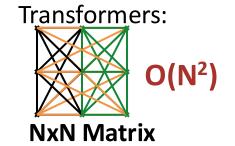
Self-attention between tokens from the same timestep



Innovation 2: State Space Models for Linear Scaling

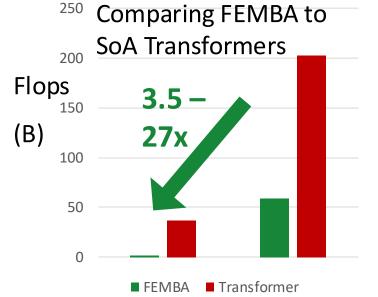
Attention is still quadratic in nature

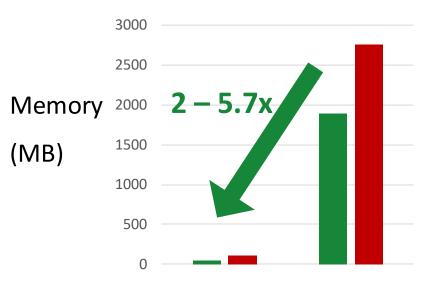




Kernel Trick +
Parallelizable
operations

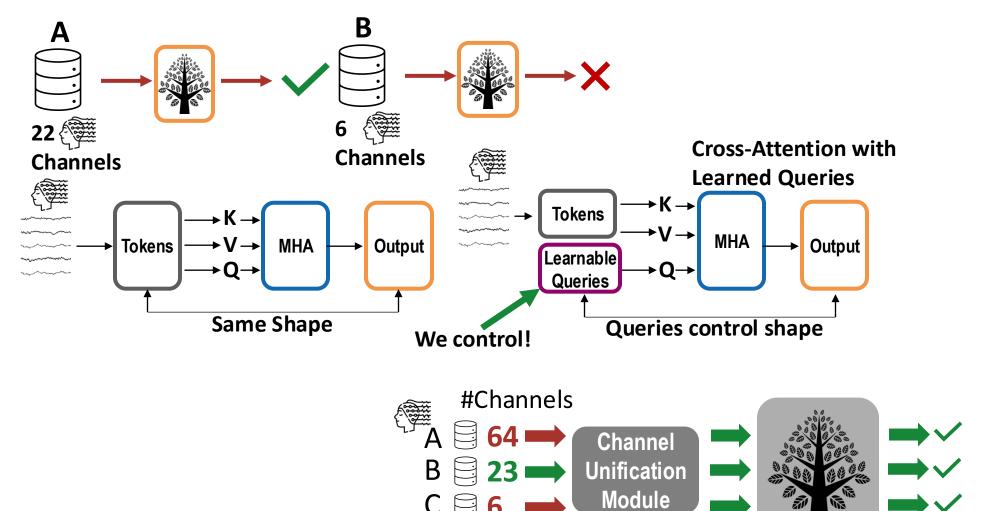
Structured State Space
Models → Mamba





Fading Memory
Not as optimized

Innovation 3: Learned Queries for Topology-Invariance



SoA Performance at a Fraction of the Cost

[Chan at al

Model

Terabytes unlabeled data

Alt-Attn, Mamba,
Channel Unification

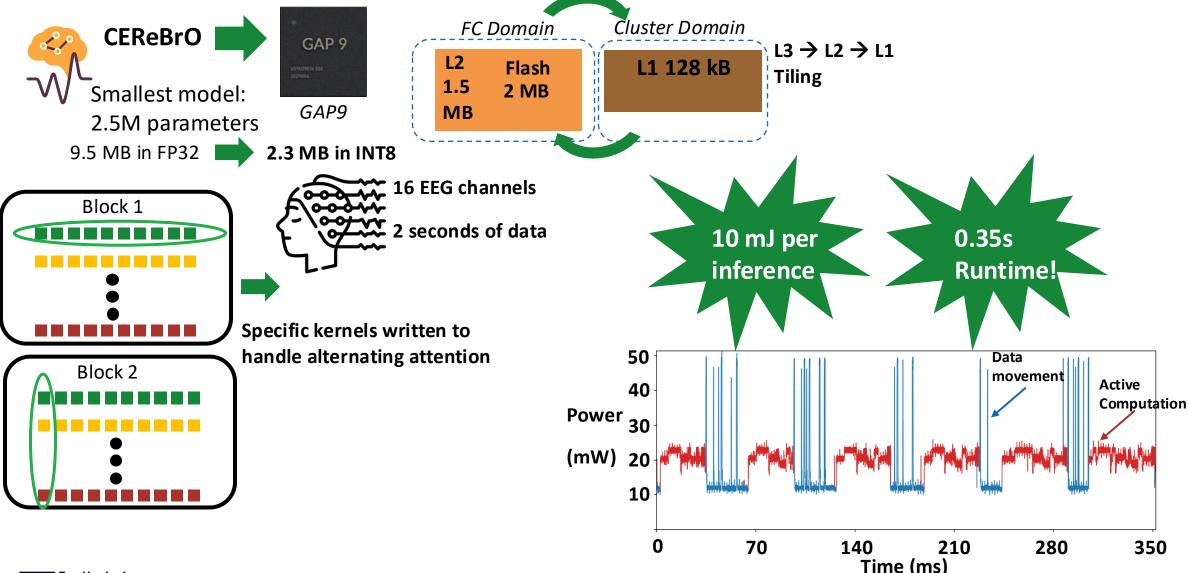
SoA	in 4	downstream	tasks

	Model	Param. (M)	FLOPs (B)	AUROC	
:a_	[Jiang et al., 2024]	46	28	0.913	SoA Transformer based
	CEReBrO	40	18 ↓1.5x	0.887	Abnormal EEG
	FEMBA	47	7 ↓4.0x	0.883	Detection
	LUNA	43	8 ↓ 3.5x	0.883	
	Class to	Ca A vaculta at a	-h		

Close to SoA results at a cheaper price!

FEMBA	7.8	1.3 ↓ 28x	0.918	EEG-Artifact Detection
2024]	3.3	36.4	0.852	SoA Transformer based Model

Bringing Foundation Models to the Edge



Summary of Key Contributions

Developed Robust & Practical ML Pipelines for Wearable Biosignal Analysis

- Classical ML Low-channel/Subject Specific
- Artifact Mitigation 96% ___ of false alarms
- Sensor Fusion

<1FP/Day

Domain-Specific SS
 Optimization

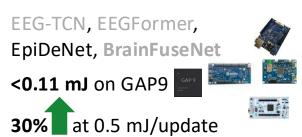
SSWCE

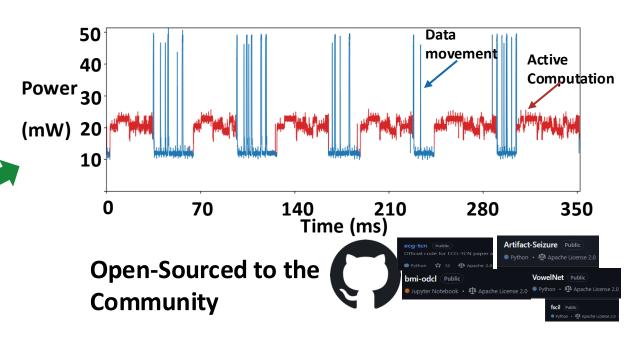
Pioneered Efficient Foundation Models for General-Purpose Biosignal Representation

- Novel Architectures Introduced
- Cross-Modal Transfer EEG → ECG/PPG
- First time Deployment on Edge Device

Designed and Deployed Ultra-Low-Power Models for On-Device Inference

- Energy-Efficient architectures
- Hardware Validation
- On-Device Continual Learning

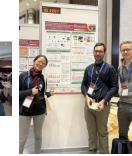


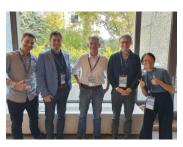


Big Thanks to All Collaborators

- [1] **T. M. Ingolfsson**, V. Kartsch, L. Benini and A. Cossettini, "A Wearable Ultra-Low-Power System for EEG-based Speech-Imagery Interfaces," in IEEE Transactions on Biomedical Circuits and Systems, 2025
- [2] B. Döner, T. M. Ingolfsson, L. Benini, Y. Li, "LUNA: Efficient and Topology-Agnostic Foundation Model for EEG Signal Analysis", 1st ICML Workshop on Foundation Models for Structured Data, 2025
- [3] B. Tóth, D. Senti ,T. M. Ingolfsson, et al., "Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation ", IEEE Engineering in Medicine & Biology Society (EMBC), 2025
- [4] A. Tegon, **T. M. Ingolfsson**, et al., "FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model", IEEE Engineering in Medicine & Biology Society (EMBC), 2025
- [5] A. Dimofte, G. A. Bucagu, **T. M. Ingolfsson**, et al., "CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention", arXiv:2501.10885, Under review 2025
- [6] **T. M. Ingolfsson**, V. J. K. Morinigo, A. Cossettini, X. Wang and L. Benini, "VowelNet: Enhancing Communication with Wearable EEG-Based Vowel Imagery, "IEEE Biomedical Circuits and Systems Conference (BioCAS), 2024
- [7] L. Mei, C. Cioflan, **T. M. Ingolfsson**, et al., "Train-On-Request: An On-Device Continual Learning Workflow for Adaptive Real-World Brain Machine Interfaces," IEEE Biomedical Circuits and Systems Conference (BioCAS). 2024
- [8] S. Frey, M. A. Lucchini, V. Kartsch, **T. M. Ingolfsson**, et al., "GAPses: Versatile Smart Glasses for Comfortable and Fully-Dry Acquisition and Parallel Ultra-Low-Power Processing of EEG and EOG," in IEEE Transactions on Biomedical Circuits and Systems, 2025
- [9] D. Jonathan, U. Pale, A. Amirshahi, W. Cappelletti, **T. M. Ingolfsson,** et al., "SzCORE: Seizure Community Open-Source Research Evaluation framework for the validation of electroencephalography-based automated seizure detection algorithms," in Epilepsia, 2024
- [10] L. Mei, **T.M. Ingolfsson**, et al., "An Ultra-Low Power Wearable BMI System With Continual Learning Capabilities," in IEEE Transactions on Biomedical Circuits and Systems, 2025
- [11] L. Benfenati, T. M. Ingolfsson, et al., "BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring," IEEE Engineering in Medicine and Biology Society (EMBC), 2024
- [12] **T. M. Ingolfsson**, et al., "BrainFuseNet: Enhancing Wearable Seizure Detection Through EEG-PPG-Accelerometer Sensor Fusion and Efficient Edge Deployment," in IEEE Transactions on Biomedical Circuits and Systems, 2024,
- [13] Y. E. Wibowo, C. Cioflan, **T. M. Ingolfsson** et al., "12 mJ Per Class On-Device Online Few-Shot Class-Incremental Learning," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2024
- [14] L. Schulthess, **T. M. Ingolfsson**, et al., "A leap into the future: Towards an augmented reality learning environment in ski-jumping," Current Issues in Sport Science (CISS), 2024
- [15] **T. M. Ingolfsson**, et al. "Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers," Nature Scientific Reports, 2024.

- [16] P. Busia, A. Cossettini, **T. M. Ingolfsson**, et al., "Reducing False Alarms in Wearable Seizure Detection With EEGformer: A Compact Transformer Model for MCUs," in IEEE Transactions on Biomedical Circuits and Systems. 2024
- [17] S. Vostrikov, **T. M. Ingolfsson**, et al., "A Muscle Pennation Angle Estimation Framework From Raw Ultrasound Data for Wearable Biomedical Instrumentation," in IEEE Transactions on Instrumentation and Measurement, 2024
- [18] L. Schulthess, **T. M. Ingolfsson**, M. Nölke, M. Magno, L. Benini and C. Leitner, "Skilog: A Smart Sensor System for Performance Analysis and Biofeedback in Ski Jumping," IEEE Biomedical Circuits and Systems Conference (BioCAS), 2023
- [19] T. M. Ingolfsson, et al., "EpiDeNet: An Energy-Efficient Approach to Seizure Detection for Embedded Systems," IEEE Biomedical Circuits and Systems Conference (BioCAS), 2023
- [20] P. Busia, A. Cossettini, **T. M. Ingolfsson**, et al., "EEGformer: Transformer-Based Epilepsy Detection on Raw EEG Traces for Low-Channel-Count Wearable Continuous Monitoring Devices," IEEE Biomedical Circuits and Systems Conference (BioCAS), 2022
- [21] T. M. Ingolfsson, A. Cossettini, S. Benatti and L. Benini, "Energy-Efficient Tree-Based EEG Artifact Detection", IEEE Engineering in Medicine & Biology Society (EMBC), 2022
- [22] **T.M. Ingolfsson**, et al. "Reducing neural architecture search spaces with training-free statistics and computational graph clustering." Proceedings of the 19th ACM International Conference on Computing Frontiers. 2022.
- [23] **T. M. Ingolfsson** et al., "Towards Long-term Non-invasive Monitoring for Epilepsy via Wearable EEG Devices," 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), 2021
- [24] **T. M. Ingolfsson**, X. Wang, M. Hersche, A. Burrello, L. Cavigelli and L. Benini, "ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network," IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2021





Thank you!

