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The Wearable Revolution & Its Processing Gap
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Rapid Growth in Wearable 
Health Monitoring

25B$

225B$

Heart Rate (ECG,PPG), Brain Signals 
(EEG) etc.

Wearables gather data and send away

Limited On-device processing!

Edge devices

Latency, Privacy, 
Power Hungry
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A Widening Chasm: Powerful AI vs Tiny Devices

Typical Smartphone Limit

Increasingly Powerful & 
Large AI Models

1
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Typical MCU Limit

30,000x
60M
2012 2024

1.8T

That image 
is of a cat

Here is your entire 
medical history analyzed

How do we push these large brains onto 
small battery powered edge devices? 
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Bridging the Gap with Practical, Robust and Scalable AI

Practical Robust Scalable

Days/weeks runtime Tackle noise head on Continual adaptation 
& multi-domain use

Resource efficiency

Strict computational 
budget.

Signal quality and noise

Real world bio-signals 
are messy.

Adapting to a changing world
Signals evolve and 
change over time

And to do these things we 
need HW <-> SW Co-design
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The Resarch Roadmap: A Path to Universal Models
2

3

4

5 7

6

TinyML for Biosignals on Edge Devices
Classical ML Deep Learning

Real World Use: 
Coping with Artifacts

Heterogeneous Sensor Fusion                
for Biosignal Classification

On-Device Continual 
Learning for Wearables

Foundation Models 
for Biosignals

Self-Supervised 
Attention-Based 

Strategies
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Algorithms for HW and HW for Algorithms

Multiple platforms explored & 
optimized

GAP8

Apollo4

STM32L475STM32F756

GAP9

FC Domain Cluster Domain

L2
1.5
MB

L1 128 kB 

Core9x

FPU4x

1x

1x Flash
2 MB

Most energy 
efficient

Key limitations:

Memory: L1 128kB

L2 1.5MB

Speed: 400MHz 
9 Core 
computation 
cluster

BioGAP

All explored 

Core

FPU
To stay ahead of 
the curve
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Seizure Detection Use-Case: EEG as a Challenging Biosignal

• Electroencephalography (EEG): 10 µV to 100 µV  low SNR

Seizure

22-64 Channels

Wearable solutions
4 Channels

Sensitivity: Seizure Windows Detected

Specificity: Normal Windows Detected 

False Positives (FP): Wrong Alert of a Seizure

Temporal region
We have less channels

PEDESITE
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EpiDeNet: An Efficient Foundation for 
On-Device Seizure Detection

C P

x5

FC

EpiDeNet

Temporal 
region

Input

Compact and Efficient, 11K parameters
Hardware and algorithmic co-design

Operates on 23

Sens.

Spec. 

FP.

91%

2.24

Sensitivity Specificity Weighted 
Cross Entropy Loss (SSWCE)

Power 
(mW)

Time (ms)

0.051 mJ per inference

𝐒𝐒𝐖𝐂𝐄 y, p = 𝐂𝐄 y, p + α 1 − 𝐒𝐏 + β(1 − 𝐒𝐍)

300mah battery

→ 300 hours

Further reduced to 
0.51 FP/day using 
Sensor fusion

only 4 channels

Work Approach Time En. Eff. [GMAC/s/W]

[Liu et al., 2021] LSTM 100ms 16.00

[Busia et al., 2022] Transformer 405ms 3.51

Us CNN 2.84ms 40.61

94%

1.18

Seizures 
detected

FP/h
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The Real-World Hurdle: The Dominance of Artifacts

#1 SoA models are trained with 
clean, clinical grade data

Data quality (SNR) high, no artifacts

Very high Sens, Spec, and low FP.

Wearable, real-world data is messy

Data quality (SNR) low, artifacts

False alarms

> 1 FP/hour

False alarms predicted by models
Predicting a seizure when there is no seizure present.

< 1 FP/Day

PEDESITE
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Fitting Decision Trees On Limited Memory 
While Reducing False Alarms by 96%

Normal Artifact Seizure

Artifact 

Detector

Seizure 

Detector

Feature 

Extractor
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1 3

4 0
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7
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2 5

1 3

4 0

9

7

6…

FFT + Wavelet (DWT) 

8

2 5

1 3

4 0

9

7

6

Keep in L1

Keep in L2

Optimized implementation

7 bytes

5 Bytes

Artifact 
Detection 
Accuracy

Model Size [kB]

Tree based 
models pruned

Fast Slow

10x Slower

Work Approach False Alarm Reduction

[Islam et al., 2016] Cleaning 80%

[Islam et al., 2020] Cleaning 49%

Us Detection 96%
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Hardware validation, this is practical not just theoretical.

7.93 μJ energy per
4 s window

GAP9 Implementation

300mah battery

→ 12.5 days

Data streaming in 
at 250-500 Hz

16/32 kB per 4s window (4 channels)

L2 L1
DMA

Feature extraction

4 Cores FFT Features

4 Cores DWT Features

1 Core for memory 
transfers

Artifact/Seizure Detection

# of trees Divisible
by number of Cores

ms

mW
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Artifact Detection in Live-Demos for BCI Drone Control
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The Next Challenge: Adapting to Evolving Biosignals
But Biosignals 
change with time

Newly trained 
model

Good performance

Same model, new data

Bad performance Fast, Expensive, 
Privacy, Latency

Do the training 
On-device

L1 128 kB

Limited space
Code Data

Buffers

L2 1536 kB…

Slow, Privacy, Latency

C P FC

Quantized 
to INT8

FP32
ODL on last 
layer

18.6 kB of additional storage
One training step in 22 ms at a 
15mW power budget

Minimal effect on battery life

30% increase in 
accuracy (BCI use-case)

Work #Params. Meas. Accuracy

[Ma et al., 2022] 291.6k 79%

[Lee et al., 2023] 8.9k 71%

Us 7.7k 91%
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The Next Frontier: From Specific to Universal Models

X: Raw Data

y: Labels

Heart Rate (ECG)
Brain Signals (EEG)
Muscle Activations (EMG)

Atrial Fibrillation, Seizure, etc.

Cheap

Expensive

X
y

Training Model

Supervised Learning

Self-Supervised Learning

X Training Model Foundation

~ 10TBs (20k+ hours).
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A Toolkit for Efficient Foundation Models
CEREBRO FEMBA LUNA

Temporal

Sp
at

ia
l

Alternating 
Attention

Solves Spatio-Temporal 
Complexity

  
  

 

 

 

  
 

 
 

 

Linear Scaling

Utilizing State Space Models

O(N2) O(N)

O(N2)

Full Attention Widely Varying 
#Channels

8-128

C

Channel Invariance

Channel 

Unification 

Module

Q
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Innovation 1: CEReBrO's Alternating Attention
C1 C2 C3 Cm

Block 1

Block 2

Intra-Channel Attention

Self-attention between tokens 
of the same channel

Inter-Channel Attention

Self-attention between tokens 
from the same timestep

Standard Self Attention → Expensive
O(N2) 𝐎 𝐓𝐍 + 𝐂𝐍
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Innovation 2: State Space Models for Linear Scaling

𝐎
𝑵𝟐

𝑪
+ 𝐂𝐍

Attention is still quadratic in nature

𝑥 𝑦hB

A

C

State Space Models

Transformers:

Recurrence NxN Matrix

O(N2)

O(N)

State: hk = Ahk-1 + Bxk

Output: yk = Chk

Kernel Trick + 
Parallelizable 
operations

Structured State Space 
Models → Mamba

0

50

100

150

200

250

FEMBA Transformer

Comparing FEMBA to 
SoA Transformers 

3.5 – 
27x 

Flops

(B)

0

500

1000

1500

2000

2500

3000

2 – 5.7x Memory

(MB)

Fading Memory

Not as optimized
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Innovation 3: Learned Queries for Topology-Invariance
A

22 
Channels

B

6 
Channels

Tokens

K
V
Q

MHA Output

Same Shape

Tokens
K

V

Q
MHA Output

Queries control shape

Learnable 

Queries

Cross-Attention with 
Learned Queries

We control!

A
B
C 6

23
64

#Channels 

Channel 

Unification 

Module
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SoA Performance at a Fraction of the Cost

Alt-Attn, Mamba, 
Channel Unification

SoA in 4 downstream tasks

Model Param. (M) FLOPs (B) AUROC
[Jiang et al., 
2024]

LUNA

CEReBrO

FEMBA

46

40

47

43

28

18

7

8

0.913

0.887

0.883

0.883

SoA Transformer based Model

1.5x

4.0x

3.5x

Close to SoA results at a cheaper price!

FEMBA 7.8 1.3 0.91828x

[Chen et al., 
2024] 3.3 36.4 0.852 SoA Transformer based Model

Terabytes unlabeled data

Abnormal EEG 
Detection

EEG-Artifact Detection
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Bringing Foundation Models to the Edge
CEReBrO

GAP9
Smallest model: 
2.5M parameters

9.5 MB in FP32 2.3 MB in INT8

FC Domain Cluster Domain

L2
1.5
MB

L1 128 kB Flash
2 MB

L3 → L2 → L1 
Tiling

Block 1

Block 2

Specific kernels written to 
handle alternating attention

0.35s 
Runtime!

16 EEG channels

2 seconds of data 10 mJ per 
inference

Time (ms)
70 140 210 280 3500

10

20

30

40

50

Power

(mW)

Active 
Computation

Data 
movement
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Summary of Key Contributions
Developed Robust & Practical 
ML Pipelines for Wearable 
Biosignal Analysis

• Artifact Mitigation

• Sensor Fusion

• Domain-Specific 
Optimization

96%        of false alarms

<1FP/Day 

SSWCE

Designed and Deployed Ultra-
Low-Power Models for On-
Device Inference

• Energy-Efficient architectures

• Hardware Validation

• On-Device Continual Learning

EEG-TCN, EEGFormer, 
EpiDeNet, BrainFuseNet

<0.11 mJ on GAP9

30%     at 0.5 mJ/update

Pioneered Efficient Foundation 
Models for General-Purpose 
Biosignal Representation

Time (ms)
70 140 210 280 3500

10

20

30

40

50

Power

(mW)

Active 
Computation

Data 
movement

• Novel Architectures Introduced

• Cross-Modal Transfer

• First time Deployment on Edge 
Device

Open-Sourced to the 
Community

EEG → ECG/PPG

• Classical ML Low-channel/Subject Specific
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